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[1] A systematization of the available methods and algorithms used for calculations of
amplitude and phase of electromagnetic fields of VLF range in the waveguide channel
Earth-ionosphere is given. The presented method is applicable to a wide class of profiles
of the electron concentration and collision frequency in the ionospheric D region and takes
into account both the dependence of the waveguide channel characteristics along the path
and the medium anisotropy due to the influence of the geomagnetic field. The use of
the effective height to improve the convergence of the iteration process of computation
of eigenvalues and of the bivector for determination of the reflective parameters of the
anisotropic ionosphere are the characteristic features of the proposed method. The above
indicated features provide a base for realization of the numerical algorithm. INDEX TERMS:
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1. Introduction

[2] The paper describes the mathematical foundation of
the effective algorithm of calculations of components of elec-
tric and magnetic field intensity in the 5–30 kHz range gener-
ated by a short antenna located at some altitude d ≤ 50 km
over the Earth surface. The distance to the observational
point R � d and R � λ (where λ is the wavelength of the
electromagnetic field in the vacuum). The main mechanism
of VLF propagation [Budden, 1961a, 1961b; Krasnushkin
and Yablochkin, 1963; Makarov et al., 1993; Wait, 1962],
at which the field is presented as an expansion in terms of
modes (eigenfunctions of the discrete spectrum of the lat-
eral operator) propagating at the shortest way between the
corresponding points, is taken into account.

[3] The receiving antenna is short and may be located at
some height da ≤ 50 km or some depth da < 0, assuming
that |da| � R. The algorithm is based on the path approx-
imation at which possible changes in the waveguide proper-

1Institute of Radiophysics, St. Petersburg State University,
St. Petersburg, Russia

Copyright 2007 by the American Geophysical Union.

1524–4423/07/2005GI000127$18.00

ties along the geodesic line are taken into account, but their
possible changes in the lateral direction being neglected.

2. Description of the Waveguide Channel
Model

[4] The Earth surface is modeled by a sphere of the radius
a, at which the impedance conditions are taken. In this case
we exclude out of the regime the waves propagating mainly
under the Earth surface because they are insignificant at
distances R exceeding the thickness of the skin layer in the
Earth. For determination of the impedance in any obser-
vational point, a model of the Earth homogeneous by the
depth described by Morgan [Morris and Lha, 1974] is used.

[5] Over the Earth surface, we have an ionized medium lo-
cated within a constant magnetic field. The Earth magnetic
field is presented in the form BE = ∇u, where the potential
u is approximated by the expression

u(r, Θg, ϕg) =

6∑
n=1

an+2

rn+1

n∑
m=0

(anm cos mϕg+

bnm sin mϕg)Pnm(sinΘg)
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where Θg and ϕg are the geographic latitude and longitude,
respectively, a is the Earth radius, Pn0(sinΘg) = Pn(sinΘg)
is the Legendre polynomial, and Pnm(sinΘg) is the associ-
ated Legendre function. The coefficients anm and bnm dif-
ferent from zero are presented below expressed in nT:

a10 = −30, 339 a20 = −1654 a30 = +1297
a11 = −2123 a21 = +1222 a31 = −588

a22 = +452 a32 = +118
a33 = +44

a40 = +958 a50 = −223 a60 = +47
a41 = +180 a51 = +65 a61 = +9
a42 = +26 a52 = +8
a43 = −6 a63 = −1
a44 = +2

b11 = +5758 b21 = −819 b31 = −116
b22 = +38 b32 = +22

b33 = −9

b41 = +33 b51 = +3 b61 = −2
b42 = −15 b52 = +4 b62 = +3

b53 = −1
b44 = −2

The concentration and collision frequency of electrons are
functions of the height over the Earth surface and are taken
according to any known model.

[6] In undisturbed conditions, the plasma frequency ωpl

at altitudes up to 50 km over the Earth surface is consider-
ably less than the electron collision frequency with neutral
particles, so in the near-Earth region the relative dielectric
permittivity of the medium ε does not differ from its value in
the vacuum. So in the used model the lower boundary of the
ionosphere is determined as the level where |ε(rl)− 1| < p1.
In the terrestrial ionosphere there is always such a level
ru, above which the characteristic scale of changes in the
medium properties l (l = max |(1/εik)(∂εik/∂r)|−1, where
εik is the tensor of relative dielectric permittivity of the
ionosphere) is much larger than the characteristic scale of
the field changes in r, so calculating this scale 1/h one may
take the medium as homogeneous (Booker roots) [Budden,
1961a]

h

k0

∼=
∣∣ ω2

pl

ω2|Y|
∣∣1/2

where Y =
|qe|
meω

BE

k0 is the wave number in the vacuum, k0 = ω
√

ε0µ0, ε0 is
the dielectric permittivity of the vacuum, µ0 is the magnetic
permittivity of the vacuum, qe is the electron charge value,
ω is the circular frequency of the electromagnetic field, me

is the electron mass, BE is the magnetic induction of the
Earth field, and at r ≥ ru the inequality h/k0 � 1 should
be fulfilled. Then above ru the field structure may be taken
as a plain wave propagating vertically independently of the

field structure at r < ru and independently of the source of
excitation of the electromagnetic field.

[7] We chose the level ru in such a way that h/k0 = p2
were large enough. Actually, the accuracy of calculation of
eigenvalues of the normal waves is determined by the choice
of rl and ru (the boundaries of the ionospheric layer called
the region important for propagation). In particular, the
choice of the p1 = 10−4 and p2 = 30 parameters provides
the relative error of calculation of the eigennumber not more
than 10−4.

[8] The problem of calculation of the fields within the
waveguide channel Earth-ionosphere excited by the antenna
located at some height over the Earth surface is formulated.
The antenna orientation is given by the angle Θp relative
to the vertical axis and by the azimuthal angle ϕp, counted
clockwise from the direction to the receiver. Jlp is the cur-
rent moment of the transmitting antenna. In the observa-
tional point, the field is received by the antenna located at
any level relative to the Earth surface. The orientation of the
receiving antenna is given by the angle Θa relative the ver-
tical and by the azimuth angle ϕa, counted clockwise from
the transmitter-receiver direction. The induced electromo-
tive force at the short receiving antenna is calculated by the
formula

Ua = la(Ẽr cosΘa + ẼΘ sinΘa cos ϕa + Ẽϕ sinΘa sin ϕa)

where la is the virtual height of the short receiving antenna,
and Ẽr, ẼΘ, and Ẽϕ are the corresponding components of the
electric field intensity in the place of the receiving antenna
location.

[9] Mathematically we formulate the problem for a vertical
dipole and after its solution we will form the field for an
arbitrary oriented short antenna applying the generalized
reciprocity theorem.

3. Mathematical Formulation of the
Problem

[10] We chose the spherical coordinate system Θ, ϕ, r, the
Θ = 0 axis passing through the vertical dipole. The source
excites the falling field independent of ϕ, so in the chosen
model of a one-dimensional irregular waveguide we have an
axis-symmetric problem. We write the Maxwell equation
in the matrix form [Felsen and Marcuvitz, 1973; Lutchenko
and Bulakh, 1986], taking the following dependence on time
exp(−iωt) :

K̃Φ = −i
∂

∂Θ
ΓΦ− iJ (1)

where

Φ̃ =

(
Ẽ
H̃

)

Φ̃ =
1√

sinΘ
Φ
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Φ =

(
E
H

)

Φ = (EΘ, Eϕ, Er,HΘ,Hϕ,Hr)
T

Ẽ is the electric field intensity vector (V m−1), H̃ is the

magnetic field intensity (A m−1), H =
√

(µ0/ε0)H̃
√

sinΘ,
µ0 and ε0 are the magnetic and dielectric constants of the
vacuum, respectively, E = Ẽ

√
sinΘ,

K̃ =

 k0rε̂ −i∇̃t

i∇̃t k0rI



∇̃t =


0 − ∂

∂r
r 0

∂

∂r
r 0

1

2
cotΘ

0
1

2
cotΘ 0



Γ =

(
0 −γ

γ 0

)
(2)

γ =


0 0 0

0 0 −1

0 1 0



J = r
√

sinΘ


√

µ0

ε0
je

jm


I is a unit matrix, k0 is the wave number in the vacuum
k0 = ω

√
ε0µ0, ε̂ is the dimensionless tensor of the dielectric

permittivity of the magnetoactive medium depending on r
and Θ, jm is the density of the external magnetic current, je

is the density of the external electric current (A m−2) and in
the case of a vertical point-like electric dipole located over
the Earth surface at r = b

je =
Jlp

2πr2 sinΘ
δ(r − b)δ(Θ− ε)lr

J is the current at the antenna input, lp is the antenna
virtual height, and lr is a unit vector. The problem solu-
tion Φ̃ has to satisfy the impedance boundary conditions at
r = a, the conditions of a field decrease at Imk0 > 0 and
r →∞, and its boundedness at Θ = 0 and Θ = π. In the ac-
cepted model Imk0 = 0, however for choosing the solution,
the commonly accepted [Makarov et al., 1993] principle of

the limiting amplitude in which a presence of losses in the
medium leading to Imk0 > 0 is used. After construction of
unambiguous solution, we come back to the model Imk0 = 0
and ε = 0.

[11] The solution of system (1) is constructed by the cross-
section method [Katsenelenbaum, 1961], presenting the so-
lution in the form of the expansion in terms of orthogonal
system of functions Ψm

Φ(r, Θ) =
∑
m>0

Am(Θ)Ψm(r, Θ) (3)

As Ψm, the eigenfunctions of the lateral operator K̃ for the
regular waveguides of comparison are chosen. The waveg-
uides of comparison are spherical waveguides with the polar
axis coinciding with the axis of the initial waveguide and the
dielectric permittivity ε̂(r) which depends only on the coor-
dinate r and coincides to the dielectric permittivity of the
initial waveguide in the Θ cross section. To construct the
eigenfunctions in the regular waveguides of comparison, we
consider homogeneous Maxwell equations and take approx-
imately that (dAm/dΘ) = iνmAm, where m is the number
of the mode. Then we neglect cotΘ in the operator ∇̃t as-
suming that | cotΘ| � |νm |, (|νm| ' k0a).

KΨm = νmΓΨm

Ψm =

(
Em

Hm

)
(4)

K =

(
k0rε̂ −i∇t

i∇t k0rI

)

∇t =


0 − ∂

∂r
r 0

∂

∂r
r 0 0

0 0 0


with the boundary conditions

[lrEm] = −δe[lr[Hmlr]]
∣∣
r=a

δe =
1√

ε′ − sin2θ
=

1√
ε + iσ/ωε0 − sin2θ

θ is the incidence angle of the plain wave on the Earth sur-
face; ε is the relative dielectric permittivity of the Earth
surface, σ is its conductivity in S m−1, and by the condition
Ψm(r) → 0 at Im k0 > 0 and r →∞, Γ have the form (2).
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In real conditions (except the Antarctics, Greenland and the
permafrost regions) |ε′| � |sin2θ|, so δe with a high accuracy
does not depend on the spectral parameter. Equation (4) is
an equation for the eigenfunctions. In order to obtain the or-
thogonality relation for the eigenfunctions a scalar product
is introduced and the conjugated operator K+ is determined
in the following way

(Ψ+
n , KΨm) = (K+Ψ+

n ,Ψm) (5)

The vector standing at the first place is taken with the com-
plex conjugation and the parenthesis mean a scalar product

(a,b) =

∞∫
a

a∗brdr

Relation (5) takes place at

K+∗ =

(
k0rε̂

T i∇t

−i∇t k0rI

)
(5′)

ε̂T is the transposed tensor ε̂ with the boundary conditions

[lrE
+
m] = δ∗e [lr[H

+
mlr]]

∣∣
r=a

the sign ∗ designates a complex conjugation. The eigenfunc-
tions of the adjoined operator satisfy the equation

K+Ψ+
n = ν∗nΓΨ+

n (6)

the eigenvalues of equation (4) at the same indices coincide
with the complex conjugated value of equation (6). We mul-
tiply the left-hand side of (4) to rΨ+∗

n , and the right-hand
side of (6) to rΨm and subtract the latter from the former.
Then

rΨ+∗
n KΨm −K+∗Ψ+∗

n rΨm = r(νm − νn)Ψ+∗
n ΓΨm

or

1

r

∂

∂r
{[r2E+∗

n Hm]r − [r2H+∗
n Em]r} =

i(νm − νn)Ψ+∗
n ΓΨm

We integrate both sides of the latter equality forming a scalar
product

∞∫
a

∂

∂r
{[r2E+∗

n Hm]r − [r2H+∗
n Em]r}dr =

i(νm − νn)

∞∫
a

Ψ+∗
n ΓΨmrdr = 0

∞∫
a

Ψ+∗
n ΓΨmrdr = (Ψ+

n , ΓΨm) = 2Nmδmn

δmn =

{
1, m = n

0, m 6= n

where

Nm =
i

2
{[E+∗

m Ḣm]r − [H+∗
m Ėm]r} · a

2
∣∣
r=a

(7)

Ėm = (∂Em/∂νm) and Ḣm = (∂Hm/∂νm) are derivatives
with respect to the spectral parameter and Nm is the nor-
malizing multiplier. Expression (3) for the solution we sub-
stitute into the initial equation (1) outside the sources region
and multiply its left-hand side scalarly to Ψ+

n . Then we ob-
tain

dAn

dΘ
− iνnAn = − 1

2Nn

∑
Am(Ψ+

n , Γ
∂Ψm

∂Θ
) (8)

The solution of the homogeneous equation (8) has an expo-
nential dependence on the Θ coordinate. At the same time,
it is known that in a regular waveguide, the angular depen-
dence of normal waves is described by the Legendre function.
Only while using asymptotic presentations of these functions
in the wave zone relative to the source and its antipode,
the Legendre function becomes approximately exponential.
Therefore we obtain the limits of applicability of the solution
(3) | cotΘ | � | νm | or Θ � (1/k0a) and π −Θ � (1/k0a),
because |νm| ∼ k0a.

[12] Assuming the eigenfunctions to be normalized, i.e.,
Nn = 1, rewrite equation (8) with respect to a new function
Λn(Θ) outside the source area for a path segment, within
which the waveguide characteristics are supposed constant.
Let’s denote Θ0 the initial coordinate of such a segment.
Assuming the eigenfunctions to be normalized, i.e., Nn = 1,
we rewrite equation (8) with respect to a new function Λn(Θ)
outside the sources for that part of the path within which
the characteristics of the waveguide are considered to be
constant. Let us designate the initial coordinate of such
part as Θ0.

An(Θ) = Λn(Θ)e

i

Θ∫
Θ0

νn(Θ′)dΘ′

(9)

dΛn

dΘ
=

1

2

∑
Λme

i

Θ∫
Θ0

(νm−νn)dΘ′

(Ψ+
n , Γ

∂Ψm

∂Θ
)

(9′)

The scalar product (1/2)(Ψ+
n , Γ∂Ψm/∂Θ) = Smn describes

the differential matrix of transformation of normal waves
[Lutchenko et al., 1986]. In the real conditions, the elec-
tric properties of the ionosphere vary smoothly, so the Smn
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elements only due to the ionosphere would be continuous
functions of the Θ argument. However variations in the con-
ductivity of the lower boundary (in terms of the scales of
field changes) in the accepted model occurs in a jump-like
way.

[13] Let a jump-like change of the medium properties oc-
curs in the cross section with a coordinate Θ0. We designate
Φ̃(1) field in the cross section Θ0 − ε and Φ̃(2) in the cross
section Θ0 + ε. The tangential components of the vectors
ΓΦ̃(1) = ΓΦ̃(2) should be continuous or∑

A(1)
m ΓΨ(1)

m =
∑

A(2)
n ΓΨ(2)

n (10)

In the former sum, generally speaking, there should present
positive and negative indices m (m < 0 corresponds to re-

flected waves). We multiply scalarly (10) to Ψ
(2)+
n . Then

A(2)
n =

1

2

∑
A(1)

m (Ψ(2)+
n , ΓΨ(1)

m ) (11)

In the obtained sum A
(1)
m , amplitudes of reflected waves m <

0 are unknown, however if we neglect them, the passed waves
are determined in (11) and A

(2)
n (Θ0) = Λ

(2)
n .

[14] The scalar product

1

2
(Ψ(2)+

n , ΓΨ(1)
m ) = Πnm (12)

may be interpreted as an element of the matrix Π of trans-
formation of normal waves and the aggregate Λ

(2)
n may be

considered as the Λ(2) vector which is determined by the
product of the Π matrix to the A(1) vector in the cross sec-
tion Θ0.

[15] The solution of system of differential equations (9′)
presents a rather tiresome problem, so we will approximately
take that the ionosphere is changing in a jump-like way. A
sequence of cross sections is chosen along the path. In each
cross section, characteristics of normal waves are determined
and to the next cross section the waveguide is considered as
homogeneous. At the joints of the cross sections, the matrix
Π is calculated neglecting the reflected waves. Thus in the
source vicinity, normal waves with the amplitudes Λ

(0)
m are

excited. At the next cross section located at the angular
distance of ∆Θ(0) the waves will have amplitudes A

(0)
m =

Λ
(0)
m eiν

(0)
m ∆Θ(0)

. In the next cross section the amplitudes will
be

Λ(1)
n =

∑
m

Π(1)
nmΛ(0)

m eiν
(0)
m ∆Θ(0)

and so on.

N−1∑
k=0

∆Θ(k) = Θ ∆Θ(k) = Θ(k+1) −Θ(k)

Λ
(N)
j =

∑
i

Π
(N)
ji Λ

(N−1)
i eiν

(N−1)
i

∆Θ(N−1)
(13)

We write the solution of system (1) in the form

Φ(r, Θ) =
∑
m

Ψ(N)
m (r)Λ(N)

m eiν
(N)
m (Θ−Θ(N)) (14)

We determine the coefficients of normal wave excitation by
a vertical dipole assuming that in the vicinity of the dipole
Θ ≤ (λ/a) the waveguide is homogeneous and so we use the
regular waveguide model. The methods of calculation of the
excitation coefficients are described below.

4. Method of Calculation of Normal Wave
Characteristics for Waveguides of
Comparison

[16] Over a homogeneous spherical surface r > a there
is a medium described by the dielectric permittivity tensor
ε̂(r).

ε̂(r) = I − X

U(U2 − Y 2)
M̂

X =
ω2

pl

ω2
U = 1 +

iνe(r)

ω
Y =

|qe|
me · ω

·BE

ω2
pl =

q2
eNe

meε0

M̂ =


U2 − Y 2

Θ −iYrU − YΘYϕ iYϕU − YΘYr

iYrU − YΘYϕ U2 − Y 2
ϕ −iYΘU − YϕYr

−iYϕU − YΘYr iYΘU − YϕYr U2 − Y 2
r


νe is the collision frequency of electrons with neutral parti-
cles, Ne is the electron concentration, BE is the Earth mag-
netic field vector, Y is the relative gyrofrequency of electrons
in the constant magnetic field of the Earth, ω is the angular
frequency, and ωpl is the plasma frequency. One has to solve
the problem to the eigenvalues, i.e., equation (4).

[17] The initial system of equations consists of 6 scalar
equations, however not all of them being differential ones.
Using two equations one can express the vertical components
of the vectors Emr and Hmr

Emr = − 1

εrr

(
νm

k0r
Hmϕ + εrΘEmΘ + εrϕEmϕ

)

Hmr =
νm

k0r
Emϕ (15)
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and obtain a new system of four differential equations


de1

dk0r
= i(Be1 + Ce2)

de2

dk0r
= i(De1 + Te2)

(16)

e1 = (Hmϕ,−Emϕ)T

e2 = (EmΘ, HmΘ)T

B =


−εΘr

εrr

νm

k0r
+

i

k0r

εΘrεrϕ

εrr
− εΘϕ

0
i

k0r



C =

 εΘΘ −
εΘrεrΘ

εrr
0

0 1



D =


1− ν2

m

(k0r)
2

1

εrr

νm

k0r

εrϕ

εrr

νm

k0r

εϕr

εrr
εϕϕ −

εrϕεϕr

εrr
− ν2

m

(k0r)
2



T =


i

k0r
− νm

k0r

εrΘ

εrr
0

εrΘεϕr

εrr
− εϕΘ

i

k0r


[18] It is known that a numerical integration of system

(16) requires special approaches, because one has to sepa-
rate two solutions satisfying the condition of a decrease at
the infinity out of four independent solutions available. At
the proper specification of the initial conditions at a height
of ru, (the choice of which was described in section 2) and
integration from the top downward, we get rid of two un-
desirable solutions, however out of two solutions left, one
will very quickly increase at the integration. To obtain a
solution stable to the integration errors, we use a bivector
formed from two solutions

Wik = b
(1)
i b

(2)
k − b

(2)
i b

(1)
k i, k = 1, 2, 3, 4 (17)

where

b =

(
e1

e2

)
b = (Hmϕ,−Emϕ, EmΘ, HmΘ)T

db

dk0r
= iFb where F =

(
B C
D T

)

j is the number of the solution of system (16) j = 1, 2.
[19] The bivector is a skew-symmetric tensor 4 × 4. At

its diagonal there are zeros and Wik = −Wki, so it has 6
independent elements. The bivector satisfies the following
system of equations:

dW

dk0r
= i(FW + WF T ) (18)

[20] We determine the initial values Wik at a height ru

from the solution of the problem on the field of a plain wave
in the longitudinal approximation

e
(1)
1 =

 h(1)

k0

i

 e
(1)
2 =

 1

i
h(1)

k0



e
(2)
1 =

 h(2)

k0

−i

 e
(2)
2 =

 1

−i
h(2)

k0



h(1)

k0
=

√
X

Yr − U

h(2)

k0
= i

√
X

Yr + U

Using the bivector elements, one can obtain the matrix of the
reflective properties of the ionosphere α̂ which is determined
by the relation

e1 = α̂e2 (19)

α11 =
W14

W34
α12 = −W13

W34

α21 =
W24

W34
α22 = −W23

W34
(20)

The system of equations for the α̂ matrix is nonlinear, so at
its integration, singularities may arise (W34 may reduce to
zero). Such phenomena arise sometimes for the equatorial
ionosphere. Two points are merits of this new method of
bivector: the linearity of system (18) and the fact that at no
conditions the Wik elements transform to the infinity.

[21] At the ru level, elements of the α̂ matrix do not de-
pend on the spectral parameter, so

∞∫
ru

Ψ+∗
m · ΓΨmrdr = 0

Therefore it follows that the scalar products (Ψ+
m, ΓΨm),

determined at the intervals [a,∞) and [a, ru], coincide.
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[22] The characteristic equation for the eigenvalues of the
waveguide problem is obtained from the boundary conditions
at the Earth surface

f(νm) = (1 + α11δe)(δe + α22) + α12α21δe = 0 (21)

The eigenvalues νm are included into the coefficients of equa-
tions (18); therefore the values of the matrix α̂ elements at
the Earth surface depend on these values. To determine νm,
the Newton method

f(νm) = f(ν0
m) +

∂f

∂νm
(νm − ν0

m) (22)

is used, where ν0
m is the initial approximation for the eigen-

value. Then

νm − ν0
m = − f(ν0

m)

∂f/∂ν

[23] Numerical realization of this algorithm and the proce-
dure of the selection of initial approximations for eigenvalues
are discussed in the next paragraph.

[24] At the Earth surface, the derivatives of the α̂ ma-
trix elements with respect to the spectral parameter ∂α̂/∂ν
are usually large, so presentation (22) is correct at small
νm − ν0

m. If the initial approximation is given with insuffi-
cient accuracy, then to obtain the eigenvalue one would need
many iterations, and at each iteration system (18) should be
integrated together with the system for the derivatives with
respect to the spectral parameter Ẇ = ∂W/∂ν

dẆ

dk0r
= i(ḞW + FẆ + ẆF T + WḞ T ) (23)

To rush the iteration process, the following approach is used:
functions satisfying the boundary conditions at the Earth
surface are constructed in the vacuum spherical cavity, and
the characteristic equation is obtained from equation system
(19) which is valid at any height ref under the condition that
at r < ref vacuum, i.e. e1 and e2 are obtained for the vac-
uum. It is convenient to chose such height ref , where α̂ is
least dependent on the spectral parameter. We will call it
an effective height. We chose ref according to the criterion
min

∑
| α̇ik |. Thus, calculating the eigenvalues, systems

(18) and (23) are integrated from ru to rl (see section 2).
Then the same systems of equations, but with the coeffi-
cients corresponding to the vacuum εik = 0 and εii = 1 are
integrated upward till the condition min

∑
| α̇ik | is fulfilled.

[25] For realization of the above described scheme of recal-
culation of the α̂ matrix to the effective height ref , a solution
should be formed in the spherical cavity in the vacuum at
the given boundary conditions of an impedance type at the
upper and lower walls.

[26] Following Makarov et al. [1991] and Kirillov [1979],
we consider the electromagnetic field independent of the az-
imuthal coordinate ϕ. We describe the field using the pair
of the Hertz potentials U1 and U2, satisfying in the cavity
a ≤ r ≤ ref to the following system of differential equations:( ∂2

∂r2
+

1

r2 sinΘ

∂

∂Θ
sinΘ

∂

∂Θ
+ k2

0

)
U =

 −je
r

√
µo

εo

0

 (24)

[27] The electromagnetic field is related to the potential
by the formulae

Ẽr = − 1

ik0r2 sinΘ

∂

∂Θ
sinΘ

∂

∂Θ
U1 −

je
r

iωε0

ẼΘ =
1

ik0r

∂2

∂r∂Θ
U1

√
µ0

ε0
H̃ϕ =

1

r

∂

∂Θ
U1

−Ẽϕ =
1

r

∂

∂Θ
U2

√
µ0

ε0
H̃Θ =

1

ik0r

∂2

∂r∂Θ
U2

√
µ0

ε0
H̃r = − 1

ik0r2 sinΘ

∂

∂Θ
sinΘ

∂

∂Θ
U2

[28] The conditions of the impedance type for the poten-
tials have the following form: at r = a

(
ik0δe +

∂

∂r

)
U1 = 0

(
1 +

δe

ik0

∂

∂r

)
U2 = 0 (25)

and at r = ref

(
1− α̂

ik0

∂

∂r

)
U = 0 U = (U1, U2)

T (26)

We solve the system of differential equations (24) by the
method of separation of variables with expansion in terms
of normal waves

U(r, Θ) =
∑
m

Λ̃mRm(r)Θm(Θ) (27)

1

sinΘ

d

dΘ
sinΘ

d

dΘ
Θm + (ν2

m − 1/4)Θm =

− δ(Θ)

2π sinΘ
(28)

( d2

dr2
+ k2

0 −
ν2

m − 1/4

r2

)
Rm = 0
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Substituting (27) into equation (24) and taking into account
(28), we obtain∑

m

Λ̃mRm = −B0δ(r − b) (28′)

where

B0 =


√

µ0

ε0
Jlp

0


at the excitation of the field by a short antenna. The δ func-
tion in the right-hand sides of equations (28), (28′) appears
because the source of the field is a point dipole situated at
the height b− a above the Earth’s surface.

[29] The function

Θm(Θ) =
1

4 cos(νmπ)
Pνm−1/2(− cosΘ)

in the interval

1

|νm|
< Θ < π − 1

|νm|

is a limited solution of equation (28′) at Θ = π. The function
Θm(Θ) may be presented in the form

Θm(Θ) ∼=
1

2

√
1

2πνm sinΘ
e

iνmΘ+i
π

4 (29)

where we neglected the antipode wave and around-the-globe
waves. To obtain a solution bounded at Θ = 0 the source,
one should take into account the finite thickness of the an-
tenna. We present it as a hollow short truncated cone the
outer surface of which is described by Θ = ε. Further on we
should construct a solution bounded in the region Θ ≤ ε, to
sew solutions in the regions Θ > ε and Θ ≤ ε at the bound-
ary Θ = ε in the way it is described in detail by Makarov
et al. [1991]. Since we are interested in the distance much
longer than the antenna thickness, ε may be tended to zero,
obtaining formula (29). We introduce new functions Vm,

and Rm =
√

(r/b)Vm(r) and new variable

ξ =
k0ref

M
ln(

ref

r
)

such that

r = ref exp(− ξM

k0ref
) M3 =

k0ref

2

Neglecting by the terms of the order of ((ref − a)/a)2 and
M/k0ref we obtain the equation with the boundary condi-
tions (

λ− ξ +
d2

dξ2

)
V = 0 (30)

(
1− τ

d

dξ

)
V = 0 ξ = 0 at r = ref (31)

(
t̂1 + t̂2

d

dξ

)
V = 0 ξ = l at r = a (32)

where

τ =
iα̂

M

t̂1 = diag{t1, 1} t̂2 = diag{1, t2}

l =
k0ref

M
ln(

ref

a
)

t1 = −iMδ1 t2 =
iδ2

M

δ1 =
a

ref
δe −

i

2k0ref
δ2 '

ref

a
δe

The vector function V and spectral parameter λ are used
at the formulation of the problem without indices, Vm is
the eigenvector function, and λm is the eigenvalue. The
eigennumber νm is related to the new spectral parameter
λm by the relation νm = k0ref

√
1− (λm/M2).

[30] Complex conjugate values of the eigenfunctions of the
adjoint operator V+∗

m satisfy equation (30) with the same
boundary conditions but only with the transposed matrix τ .
We multiply equation (30) with the spectral parameter λm

and function Vm to the function V+∗
n , satisfying equation

(30) with the spectral parameter λn. We multiply equation
(30) to Vm and subtract the latter from the former. Then

(λm − λn)VmV+∗
n =

Vm
d2

dξ2
V+∗

n −V+∗
n

d2

dξ2
Vm (33)

We integrate (33) with respect to ξ within the spherical cav-
ity (0, l) and obtain

(λm − λn)

l∫
0

V+∗
n Vmdξ =

Vm
d

dξ
V+∗

n

∣∣∣
ξ=l

−V+∗
n

d

dξ
Vm

∣∣∣
ξ=l
−

Vm
d

dξ
V+∗

n

∣∣∣
ξ=0

+ V+∗
n

d

dξ
Vm

∣∣∣
ξ=0

(34)

If the boundary condition for Vm and V+∗
n at ξ = l and

ξ = 0 does not depend on the spectral parameter, then the
right-hand side of (34) tends to 0 and the functions Vm and
V+∗

n form an orthogonal system.
[31] To construct the eigenfunctions Vm(ξ) we consider

two independent solutions of equation (30) Fi0(λ, ξ) (i =
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0, 1) and their derivatives Fi1(λ, ξ). They in pairs satisfy
the following system

∂Fi0

∂ξ
= Fi1

∂Fi1

∂ξ
= (ξ − λ)Fi0 (35)

with the initial conditions

F00(λ, 0) = 0 F10(λ, 0) = −1

F01(λ, 0) = 1 F11(λ, 0) = 0 (36)

Functions Fi0(λ, ξ) are the Airy’s functions and the Jacobian
composed of two solutions Fi0(λ, ξ), is independent of ξ

F00F11 − F01F10 = 1 (37)

As functions of the λ parameter, Fik(λ, ξ) satisfy the follow-
ing system of differential equations

∂F00

∂λ
= −F01 − F10

∂F10

∂λ
= λF00 − F11

∂F01

∂λ
= −(ξ − λ)F00 − F11

∂F11

∂λ
= λF01 − (ξ − λ)F10 (38)

System (38) makes it possible to continue analytically in
terms of λ the aggregate of the functions Fik(λ, ξ), if they are
known at some λ. System (38) is obtained in the following
way. Let Ũ1(ξ) and Ũ2(ξ) be 2 independent solutions of the
Airy’s equation

d2Ũ

dξ2
− ξŨ = 0

Then the system of equations (35) is satisfied if one takes

F00(λ, ξ) = Ũ1(−λ)Ũ2(ξ − λ)− Ũ2(−λ)Ũ1(ξ − λ)

F00(λ, 0) = 0

F01(λ, ξ) = Ũ1(−λ)Ũ ′
2(ξ − λ)− Ũ2(−λ)Ũ ′

1(ξ − λ)

F01(λ, 0) = 1

F10(λ, ξ) = Ũ ′
1(−λ)Ũ2(ξ − λ)− Ũ ′

2(−λ)Ũ1(ξ − λ)

F10(λ, 0) = −1

F11(λ, ξ) = Ũ ′
1(−λ)Ũ ′

2(ξ − λ)− Ũ ′
2(−λ)Ũ ′

1(ξ − λ)

F11(λ, 0) = 0 (38′)

where

Ũ ′(ξ) =
dŨ(ξ)

dξ

Thus, relations (35), (36), and (37) are satisfied. We differ-
entiate (38) with respect to λ and obtain system (38′).

The vector-function V(λ, ξ) and its derivative
[dV/dξ](λ, ξ) are expressed via Fik(λ, ξ) in the follow-
ing way

V(λ, ξ) = F00(λ, ξ)x + F10(λ, ξ)y (39)

dV

dξ
(λ, ξ) = F01(λ, ξ)x + F11(λ, ξ)y (40)

where vectors x and y are independent of ξ. Using the initial
values (36) at the upper wall of the waveguide (ξ = 0), we
obtain

V(λ, 0) = −y
dV

dξ
(λ, 0) = x

The boundary conditions are satisfied if

y = −τx

At the lower wall of the waveguide under ξ = l, the boundary
conditions are satisfied if

x = −Ty

where

T = diag[T1, T2]

T1 = D11/D01

T2 = D10/D00

D00 = F00(λ, l) + t2F01(λ, l)

D01 = F01(λ, l) + t1F00(λ, l)

D10 = F10(λ, l) + t2F11(λ, l)

D11 = F11(λ, l) + t1F10(λ, l) (40′)

Here t1 = −iMδ1 and t2 = iδ2/M . To fulfill the conditions
at the lower and upper boundaries, the equality should be
valid

x = Tτx x = (x1, x2)
T (41)
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Equation system (41) relative x1 and x2 is linear and ho-
mogeneous. For the existence of a nonzero solution, the
determinant should be made to vanish.

f(λm) = [1− T1τ11][1− T2τ22]− T1τ12T2τ21 = 0 (42)

Equation (42) may be considered as characteristic equation
recalculated from the Earth surface to the effective height,
and its roots are the eigenvalues λm. The T and τ matrices
are functions of λm.

[32] The roots of equation (42) are looked for by the it-
eration method, the convergence of the process depends on
the accuracy of taking the initial approximations λ0. The
method of calculation of the initial approximations was de-
veloped by Kirillov [1979, 1981, 1983]. This method is based
on the utilization of eigenvalues corresponding to the waveg-
uide with ideally conducting lower boundary and magnetic
upper boundary by insertion of corrections that take into
account finite values of electric and magnetic parameters of
the boundaries. The correction to the spectral parameter λ
is found in the following way

λ− λ0 = − f(λ0)

(∂f/∂λ)
(43)

where

∂f

∂λ
= −(Ṫ1τ11 + T1τ̇11)(1− T2τ22)−

(Ṫ2τ22 + T2τ̇22)(1− T1τ11)−

Ṫ1τ12T2τ21 − T1τ̇12T2τ21−

T1τ12Ṫ2τ21 − T1τ12T2τ̇21

Ṫ1 =
Ḋ11

D01
− D11Ḋ01

(D01)
2

Ṫ2 =
Ḋ10

D00
− D10Ḋ00

(D00)
2

Ḋ00 = −F01 − F10 + t2[(λ− l)F00 − F11]

Ḋ01 = (λ− l)F00 − F11 + t1[−F01 − F10]

Ḋ10 = λF00 − F11 + t2[λF01 − (l − λ)F10]

Ḋ11 = λF01 − (l − λ)F10 + t2[λF00 − F11]

τ̇ = iˆ̇α/M

Here dot denotes a differentiation with respect to the spec-
tral parameter λ. The found eigenvalues are excluded out of
characteristic equation (42) while looking for the next val-
ues. Let λ1 is found. Then the characteristic equation may
be presented in the form

f(λ) = f1(λ) (λ− λ1)

and we obtain the corrections to the eigenvalue by the for-
mula

(λ2 − λ0
2) = −f1(λ

0
2)

∂f1

∂λ

= − f(λ0
2)

∂f

∂λ
− f(λ0

2)

λ0
2 − λ1

Let n eigenvalues are found. Then looking for the n+1 value,
we use the formula

λn+1 − λ0
n+1 =

− f(λ0
n+1)

∂f(λ0
n+1)

∂λ
− f(λ0

n+1)

n∑
k=1

1

(λ0
n+1 − λk)

For determination of the excitation coefficients or amplitudes
of the normal waves, we rewrite equation (28′) in terms of
the introduced functions Vm of the variable ξ

∑
m

Λ̃mVm = −P0
k0ref

M · bδ(ξ − ξb) (44)

where

M = (
k0ref

2
)
1/3

ξb =
k0ref

M
ln(

ref

b
)

Vm = (V1m, V2m)T

We multiply scalarly the left-hand side of equation (44) to
the eigenfunction of the adjoint operator V+

m and, taking
them orthogonal at the interval [0, l], we obtain the excita-
tion coefficient of the field by a short vertical antenna

Λ̃m = −Jlp

√
µ0

ε0

k0

M

ref

b
V+∗

1m(ξb) (45)

We write out the components of the electromagnetic field in
the vacuum cavity of a regular waveguide

ẼΘ(r, Θ) =
∑
m

Λ̃m
1

2

eiπ/4+iνmΘ

√
2πνm sinΘ

νm

k0r
√

rb
×

[
1

2
V1m(ξ)− k0ref

M

dV1m(ξ)

dξ

]
(46)
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Ẽϕ(r, Θ) =

−i
∑
m

Λ̃m
1

2

eiπ/4+iνmΘ

√
2πνm sinΘ

νm√
rb

V2m(ξ) (47)

Ẽr(r, Θ) =

−i
∑
m

Λ̃m
1

2

eiπ/4+iνmΘ

√
2πνm sinΘ

ν2
m

k0r
√

rb
V1m(ξ) (48)

√
µ0

ε0
H̃Θ(r, Θ) =

∑
m

Λ̃m
1

2

eiπ/4+iνmΘ

√
2πνm sinΘ

νm

k0r
√

rb
×

[
1

2
V2m(ξ)− k0ref

M

dV2m(ξ)

dξ

]
(49)

√
µ0

ε0
H̃ϕ(r, Θ) =

i
∑
m

Λ̃m
1

2

eiπ/4+iνmΘ

√
2πνm sinΘ

νm√
rb

V1m(ξ) (50)

√
µ0

ε0
H̃r(r, Θ) =

−i
∑
m

Λ̃m
1

2

eiπ/4+iνmΘ

√
2πνm sinΘ

ν2
m

k0r
√

rb
V2m(ξ) (51)

5. Main Formulae for the Eigenfunctions,
Excitation Coefficients, and the Field at
the Observational Point

[33] We write down the normalized elements of six vectors
Ψm (eigenfunctions of the lateral operator K) in the vacuum
cavity, neglecting the terms of the order of 1/|νm|.

EmΘ(r) =
νm

k0r
√

rb

[1
2
V1m(ξ)− k0ref

M

dV1m(ξ)

dξ

]√ 1

am
(52)

Emϕ(r) = − iνm√
rb

V2m(ξ)
1√
am

(53)

Emr(r) =
ν2

m

ik0r
√

rb
V1m(ξ)

1√
am

(54)

HmΘ(r) =
νm

k0r

1√
rb

[1
2
V2m(ξ)−

k0ref

M

dV2m(ξ)

dξ

] 1√
am

(55)

Hmϕ(r) =
iνm√

rb
V1m(ξ)

1√
am

(56)

Hmr(r) =
ν2

m

ik0r
√

rb
V2m(ξ)

1√
am

(57)

and elements Ψ+∗
m of the eigenfunctions of the adjoint oper-

ator K+∗

E+∗
mΘ(r) =

νm

k0r
√

rb

[1
2
V +∗

1m (ξ)−

k0ref

M

dV +∗
1m (ξ)

dξ

]√ 1

am

E+∗
mϕ(r) = − iνm√

rb
V +∗

2m (ξ)
1√
am

E+∗
mr(r) =

ν2
m

ik0r
√

rb
V +∗

1m (ξ)
1√
am

H+∗
mΘ(r) =

νm

k0r

1√
rb

[1
2
V +∗

2m (ξ)−

k0ref

M

dV +∗
2m (ξ)

dξ

] 1√
am

H+∗
mϕ(r) =

iνm√
rb

V +∗
1m (ξ)

1√
am

H+∗
mr(r) =

ν2
m

ik0r
√

rb
V +∗

2m (ξ)
1√
am

am = −ν3
m/(2M2k0b) Vm = (V1m, V2m)T

(V+
m,Vm) = 1 (Ψ+

m, ΓΨm) = 2

M =
(k0ref

2

)1/3

ξ =
k0ref

M
ln

ref

r
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We find the normalizing factor nm with the help of for-
mula (34), first differentiating it with respect to λ1, and
then equalizing λ1 = λ2.

nm =
(∂F00

∂λ
x1 +

∂F10

∂λ
y1

)dV +∗
1m

dξ

∣∣
ξ=l

+

(∂F00

∂λ
x2 +

∂F10

∂λ
y2

)dV +∗
2m

dξ

∣∣
ξ=l
−

(
∂F10

∂λ
x1 +

∂F11

∂λ
y1

)
V +∗

1m

∣∣
ξ=l
−

(
∂F10

∂λ
x2 +

∂F11

∂λ
y2

)
V +∗

2m

∣∣
ξ=l

(58)

The derivatives of the function Fik with respect to the spec-
tral parameter λ are expressed via functions Fik by formulae
(38), the derivatives vanishing at ξ = 0. The eigenfunctions
V satisfy the boundary conditions, therefore y1 = −(x1/T1),
y2 = −(x2/T2), and T1 = (D11/D01), T2 = D10/D00). The
eigenfunctions at any ξ are expressed by the following for-
mulae

V1m(ξ) =
[
F00(λmξ) ·D11−

F10(λmξ) ·D01

] 1√
nm

x1

D11
(59)

V2m(ξ) =
[
F00(λmξ) ·D10−

F10(λmξ) ·D00

] 1√
nm

x2

D10
(60)

dV1m(ξ)

dξ
=
[
F01(λmξ) ·D11−

F11(λmξ) ·D01

] 1√
nm

x1

D11
(61)

dV2m(ξ)

dξ
=
[
F01(λmξ) ·D10−

F10(λmξ) ·D00

] 1√
nm

x2

D10
(62)

The functions Fik(λ, ξ) and Dik are determined by formulae
(35) and (40′). On the Earth surface ξ = l, taking into
account F00F11 − F01F10 = 1, the above indicated formulae
are transformed to the form

V1m(l) =
x1

D11

1√
nm

dV 1m

dξ
(l) = − x1

D11
t1

1√
nm

(63)

V2m(l) =
x2

D10
t2

1√
nm

dV 2m

dξ
(l) = − x2

D10

1√
nm

(64)

where t1,2 are determined in section 4. At an effective height
ξ = 0, we have

V1m(0) =
x1

D11
D01

1√
nm

dV 1m

dξ
(0) = x1

1√
nm

(65)

V2m(0) =
x2

D10
D00

1√
nm

dV 2m

dξ
(0) = x2

1√
nm

(66)

In order to obtain the functions of the conjugated operator
V+∗ and dV+∗/dξ, one should substitute x1 to x+

1 and x2

to x+
2 in formulae (59)–(66). Equation (41) we rewrite in

the form

x1(D01 −D11τ11) = D11τ12x2

x1D10τ21 = (D00 −D10τ22)x2

and from this obtain a characteristic equation

(D01 −D11τ11)(D00 −D10τ22) = D11D10τ12τ21

If for the “m” mode (λm enters as a parameter into Dik)

|D10τ21/(D00 −D10τ22)| < |D11τ12/(D01 −D11τ11)|

we take

x1 = 1 x+
1 = 1

If

|D00 −D10τ22| > |D11τ12|

then

x2 =
D10τ21

D00 −D10τ22
x+

2 =
D10τ12

D00 −D10τ22
(67)
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In the opposite case

x2 =
D01 −D11τ11

D11τ12
x+

2 =
D01 −D11τ11

D11τ21

If for the “m” mode

|D10τ21/(D00 −D10τ22)| > |D11τ12/(D01 −D11τ11)|

we take

x2 = 1 x+
2 = 1

if

|D01 −D11τ11| > |τ21D10|

then

x1 =
D11τ12

D01 −D11τ11
x+

1 =
D11τ21

D01 −D11τ11
(68)

In the opposite case

x1 =
D00 −D10τ22

D10τ21
x+

1 =
D00 −D10τ22

D10τ12

[34] According to (1), (3) and (9) we write the field in a
regular waveguide in terms of Ψm

Φ̃(r, Θ) =
1√

sinΘ

∑
ΛmΨm(r)eiνmΘ (69)

Comparing (69) to formulae (46)–(51), we obtain the rela-
tion between Λ̃m and Λm

Λm =
1

2
Λ̃me+iπ/4√am/

√
2πνm (70)

We will name Λm a modified excitation coefficient.
[35] To find the excitation coefficients of modes by the

antenna located at a height (b − a) over the Earth surface
and oriented in an arbitrary way we use the generalized reci-
procity theorem for anisotropic media [Felsen et al., 1973].
It follows from this theorem

Ẽ1p2 = Ẽ2p1 (71)

where pk =
∫

jekdV (k = 1, 2), and in the case of short linear
antenna considered here

pk = Jlplk

where J is the current at the antenna base, lp is the an-
tenna virtual height, lk is a unit vector directed along the
antenna, and Ẽ1 is the field of the antenna with the moment
p1 in the waveguide filled by the medium with the dielectric
permittivity ε̂(z), in the observation point coinciding to the
position of the auxiliary source p2. On the Earth surface, the
impedance δe is given and p1 is oriented in an arbitrary way.
Ẽ2 is the field of the source p2 of a vertical short antenna in

the point coincided with the source position p1. The wave-
guide is filled by the medium with a transposed tensor of the
dielectric permittivity ε̂T (z) and the same impedance on the
Earth.

[36] Let the current momenta of both sources |p1| = |p2|
and heights (b − a) of their position over the Earth surface
coincide by magnitude. We present the field in the form of
a sum

E1 =
∑

ΛmE(1)
m eiνmΘ (72)

over normal waves of the lateral operator K, (formula (2)).
One has to determine Λm.

[37] In the second problem we present in the same way

E2 =
∑

Λm(2)E
(2)
m eiνmΘ (73)

E
(2)
m being the eigenfunctions of the operator K(2) which

is different from K+∗ (formula (5′)) in the following way:
(1) the sign at∇t is changed and (2) the sign in the boundary
conditions is changed. These differences are compensated by
the changes in the sign of lΘ in the second problem. The
eigenvalues νm in (72) and (73) coincide. Formulating the
problem, we have noted that the receiver and transmitter are
located in the near-ground layer of the atmosphere below the
ionosphere, therefore

E
(2)
mΘ = −E

(1)+∗
mΘ H

(2)
mΘ = −H

(1)+∗
mΘ

E(2)
mr = E(1)+∗

mr E(2)
mϕ = E(1)+∗

mϕ

H(2)
mr = H(1)+∗

mr H(2)
mϕ = H(1)+∗

mϕ

then

E(2)+∗
mr = E(1)

mr

Let

Em = E(1)
m

Λm(2) = −Jlp

√
µ0

ε0

k0ref

2Mb
V1m(ξb)

√
am/

√
2πνm

Using equality (71) we obtain∑
m

[
Jlp · ΛmE(1)

mr − Λm(2)(E
(2)
m p1)

]
eiνmΘ = 0 (74)

or, equalizing to zero each term in the sum, we obtain

Λm =
{

Λm(2)(E
+∗
mr(ξb) cosΘa−

E+∗
mΘ(ξb) sinΘa cos ϕa+
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E+∗
mϕ(ξb) sinΘa sin ϕa)

}/
Emr(ξb)

the following formula being valid

Λm = −120π · Jlpk0ref

2Mb
√

2πνm

√
am

[
V +∗

1 (ξb) cosΘa+

i

νm

(
1

2
V +∗

1 (ξb)− 2M2 dV +∗
1 (ξb)

dξ

)
sinΘa cos ϕa+

k0b/νmV +∗
2 (ξb) sinΘa sin ϕa

]
(75)

ξb =
k0ref

M
ln

ref

b

[38] The modified excitation coefficients Λm are presented
in millivolts, if the current in the antenna J , antenna length
lp, and source coordinate b are expressed in amperes, meters,
and kilometers, respectively.

[39] In the real conditions, the Earth-ionosphere waveg-
uide appears irregular because of the inhomogeneity of geo-
physical conditions (conductivity of the Earth surface, il-
lumination of the path, and magnetic field of the Earth).
In the model we use, the real waveguide is presented as a
piecewise-homogeneous one.

[40] At the homogeneous piece with number 0 in the vicin-

ity of the transmitter we find the eigenvalues ν
(o)
m and eigen-

functions Ψ
(o)
m , and take Λ

(o)
m = Λm. Using formula (12)

we determine the matrix of transformation of normal waves
Π

(1)
nm = (1/2)(Ψ

(1)+
n , ΓΨ

(o)
m ) at the joint boundary of ho-

mogeneous pieces, and then calculate the amplitudes of the
normal waves falling onto the boundary of the next to num-
ber N homogeneous piece by the formula

Λ
(N)
j =

∑
i

Π
(N)
ji Λ

(N−1)
i eiν

(N−1)
i

∆Θ(N−1)
(76)

Π(N)
nm =

1

2
(Ψ(N)+

n , ΓΨ(N−1)
m )

[41] The field in the irregular waveguide we find using the
formula

Φ̃(r, Θ) =
1√

sinΘ

∑
m

Ψ(N)
m (r)Λ(N)

m eiν
(N)
m (Θ−Θ(N)) (77)

[42] Thus for calculation of any component of the field
at any height in the vacuum cavity of the irregular waveg-
uide using formula (77), we have formulae for Λ

(0)
m ; Λ

(N)
m is

calculated using formula (76) with the help of the transfor-

mation matrix Π
(N)
nm . Elements of the latter matrix may be

calculated approximately by the formula

Πnm =
1

λ
(2)
n − λ

(1)
m

[
V (2)+∗

n
dV

(1)
m

dξ
−

V (1)
m

dV
(2)+∗

n

dξ

]l

0

·
(

a

ref

)4/3

The eigenfunctions (52)–(57) are recalculated to any height
by the formulae (59)–(62). The approximated value of the
normalized factor is calculated by formula (58).

[43] The relative error ∆ of calculation of the normalizing
factor is estimated by the formula

∆ =

∞∫
ref

Ψ+∗
m ΓΨmrdr

ref∫
a

Ψ+∗
m ΓΨmrdr

=

(x+
1 (τ̇11x1 + x2τ̇12) + x+

2 (τ̇21x1 + x2τ̇22))
1

M2nm
(78)

for every mode m.
[44] If the observation point is located below the surface

level, the field first is calculated on the Earth surface by the
above described formulae Ẽ(a), and then the components
ẼΘ and Ẽϕ are multiplied to exp(−ikEda), where da < 0
is the depth of the receiver location, kE = k0

√
εE , εE =

ε + (iσ/ωε0), ε is the relative dielectric permittivity, and
σ is the conductivity of the medium where the receiver is
located,

ẼΘ,ϕ(a + da, Θ) = ẼΘ,ϕ(a, Θ)× exp(−ikEda) (79)

Ẽr(a + da, Θ) = Ẽr(a, Θ) exp(−ikEda)/εE (80)

We do the same for three components of the magnetic field

H̃r,Θ,ϕ(a + da, Θ) = H̃r,Θ,ϕ(a, Θ)× exp(−ikEda) (81)

The phase of the components of the field Φ̃ is determined
relative to the phase of the current J at the antenna input.

6. Conclusion

[45] This paper is mainly of a review character and com-
piles the existing methods of description of the field in a
spherical anisotropic waveguide channel Earth-ionosphere
with the dependence of the medium properties on two spatial
coordinates at its excitation by an arbitrary oriented short
antenna. A two-dimensionally inhomogeneous waveguide is
modeled by a sequence of homogeneous pieces. To acceler-
ate the iteration process while looking for the eigenvalues,
it is proposed to use an effective height of the waveguide
channel calculated as a height below which vacuum is lo-
cated at the least dependence of the elements of the matrix
of the reflective properties of the ionosphere on the spectral
parameter for the main mode. It is shown that the use of
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a bivector at calculation of the reflective characteristics of
the ionosphere makes it possible to avoid an appearance of
a singularity. For acceleration of the calculations it is pro-
posed to calculate the coefficients of reexcitation of normal
waves over the vacuum region, the control of the reexcita-
tion matrix elements accuracy being performed by the above
described method.
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