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Discussion paper: The eigen oscillations of the solar
active regions
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[1] The standing MHD-waves in the potential magnetic arcades describing the bipolar
active regions are investigated. The eikonal method allows us the analytical study of the
short waves which are divided into the Alfvén and magnetosonic waves. The eigen modes
of the magnetic arcades are formed as a result of their reflection from the photosphere. The
Alfvén mode oscillations of the certain frequency take place on the magnetic surfaces. The
fast mode oscillations also take place on some surfaces but they are not magnetic. Each
oscillation surface has a discrete set of the eigen frequencies. INDEX TERMS: 7524 Solar Physics,

Astrophysics, and Astronomy: Magnetic fields; 7836 Space Plasma Physics: MHD waves and instabilities; 7509

Solar Physics, Astrophysics, and Astronomy: Corona; KEYWORDS: Solar active regions; Eigen oscillations;

Magnetic arcades.
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1. Eikonal Method for the Ideal MHD

[2] In the geometric acoustics short-wave perturba-
tions are described by functions of the form f(r, t) =
A(r, t) exp(iS(r, t)), where A is called the wave amplitude
and S is called the eikonal. For the monochromatic waves
the eikonal has been taken as S(r, t) = ω(τ(r) − t). The
eikonal method may be used when the wavelengths are small
as compared with equilibrium state scale l0. Let vA0 and cs0

be the scales of Alfvén and sound velocities, then the fre-
quency should satisfy the following conditions 1/ω � l0/vA0

and 1/ω � l0/cs0, i.e. the frequency should be high. The
function τ(r) is also called the eikonal. For the MHD-waves
it is derived from the equations
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where P0 = P0(r), ρ0 = ρ0(r), B0 = B0(r) are the equi-
librium state. The first equation corresponds to the Alfvén
wave, the second gives the fast and slow magnetosonic waves.
In the small plasma beta approximation the eikonal equation
for the fast waves is
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The zero order approximation for the Alfvén waves is

v0 = A(∇τ ×B0)

b0 = −A(B0∇τ)(∇τ ×B0) p0 = 0 (3)

where A is some coefficient that is found from the solvability
condition of the equations for the first order approximation
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(B0∇τ)(∇× (v0 ×B0)))(∇τ ×B0) = 0

The zero order approximation for the magnetosonic waves is
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The equation for the coefficient A in case of the fast waves
is (
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Here plus and minus are taken for the fast and slow waves re-
spectively. This results allow us to draw the conclusion that
the short-wave perturbations in nonuniform mediums have
the main properties of the MHD-waves in uniform mediums.
The Alfvén and the magnetosonic waves are not coupled.
The Alfvén and the slow waves do not propagate across the
equilibrium magnetic field.

2. Oscillations of Magnetic Arcades

[3] Let us consider the bipolar solar active region with the
potential magnetic field
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0 < x < ∞, −∞ < z < ∞, −π/2 < y < +π/2. The plasma
density we take in the form

ρ0(r) = ρ0e
−δx/l0 δ ≥ 0 (5)

In the coronal conditions the small plasma beta approxima-
tion may be used. The plane x = 0 is the photosphere sur-
face, x > 0 is the height above the photosphere, the param-
eter l0 gives the active region scale. The magnetic field lines
have the equation e−x/l0 cos(y/l0) = cos(y0/l0) with some

constant y0 and formate the arches which are contained in
the planes z =const.

[4] In this field there are the Alfvén waves propagating
from one footpoint to another along the rays which coincide
with the magnetic arches. Being reflected from the pho-
tosphere they form the standing waves that give the eigen
Alfvén modes of the active region. The standing fast waves
are formed on the rays similar to magnetic arches, their ends
lie on the photosphere. The boundary condition on the pho-
tosphere is taken as

v|x=0 = 0 (6)

The standing waves are described by the symmetric and an-
tisymmetric functions
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The spectrum is
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where kτ = (n+1/2)π for the even mode and kτ = nπ for the
odd mode, the integer number n� 1. The expression for the
eikonal τ(r) is defined below. The oscillations are localized
near the rays whose footpoints are (0,−y0, z0) and (0, y0, z0).
The rays form the surfaces, each of them is characterized by
the discrete set of eigen frequencies. The frequencies vary
continuously from one surface to another. For the Alfvén
wave we obtain the eikonal
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Here vA0 = B0/
√

4πρ0 is the Alfvén velocity at the corona
basis. For the velocity and magnetic field amplitudes we
have
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where G(ξ) is an arbitrary function. The plasma motions
are polarized along the tunnel of the magnetic arcade. The
plasma distribution reveals itself in the space distribution of
the eigen oscillations, for δ < 4 they are localized close to

2 of 3



GI1003 mikhalyaev: solar active regions GI1003

the apexes of the magnetic arches, and for δ > 4 they are
localized close to the footpoints.

[5] For the fast waves we obtain the eikonal
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The amplitudes of the fast waves are
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The plasma motions are polarized in the plane of the mag-
netic arches. The fast rays obey the equation

e−(δ/2−1)x/l0 cos((δ/2− 1)y/l0) = cos((δ/2− 1)y0/l0)

If δ < 2, the rays rise infinitely upward in the corona and
the fast waves propagate freely. In this case the frequency
is arbitrary, i.e. the fast modes spectrum is continuous. If
δ = 2, the rays are transformed into a horizontal straight
line. We can formulate no obvious boundary conditions in
this case. If δ > 2, the rays have the arch form and the
waves may be reflected from the photosphere. Moreover, if
2 < δ < 4 the fast rays arches are more gently slopping
than the magnetic arches. In this case only a part of the
fast waves are localized close to photosphere, one part of the
spectrum is discrete and the other part may be continuous.
If δ > 4, the fast rays arches are steeper than the magnetic
arches, here all fast waves are localized and the spectrum is
discrete fully.

B. B. Mikhalyaev, Kalmyk State University, 11 Pushkin Str.,
Elista 358000, Russia.

3 of 3


