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[1] MHD-oscillations of an inhomogeneous coronal loop consisting of a dense cord and a
surrounding shell are investigated. Magnetic field in the cord is longitudinal and in the shell
is azimuthal only. Usually the nonuniform field leads to the existence of resonance. However
here we assume the resonance points non exist in the tube, i.e. the resonances are cutted.
Our approach pursue a target — an investigation of an influence of the wave radiation on
the tube oscillations. The resonant absorption of tube oscillation energy is eliminated. The
same tube effectively radiate a magnetosonic waves into the environment and the Q-factor
of the tube oscillations is small. The presented model can explain the fast damping of the
coronal loop oscillations observed by the TRACE EUV channel. INDEX TERMS: 7509 Solar
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[2] It is well known that the coronal magnetic flux tubes
are twisted. In addition to the longitudinal magnetic field
they also contain an azimutal component. The magnetic
tubes undergoe expansion in the rarefied solar atmosphere.
If the tube expands, the azimutal field Bϕ ∼ r−1 on the
periphery of the tube is formed. The longitudinal magnetic
field persists only in the central part of the tube [Parker,
1979]. The mathematical difficulties that arise in describ-
ing of such coronal tube force us to use its crude model in
which the magnetic field has only a longitudinal component
in the central part and only an azimutal component on the
periphery.

[3] We consider a cylindrical tube of radius a with the
plasma density ρ0m = ρ0/(αr)2 in which a central part of
radius b (b < a) (is called a cord) is detached by its plasma
density ρ0i, the other part of the tube is called a shell. The
plasma density in the surrounding corona is ρ0e < ρ0i. The
equilibrium magnetic field has the follow distribution

B0(r) =


B0iez r < b

B0

αr
eϕ b < r < a

B0eez a < r
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The Alfvén speeds in the cord and in the corona are VAi, VAe.
V 2

Am = B2
0/4πρ0 is the Alfvén speed scale in the shell. The

equilibrium conditions for the tube are

ρ0iV
2
Ai =

ρ0V
2
Am

α2b2

ρ0V
2
Am

α2a2
= ρ0eV

2
Ae

[4] Let us seek the solutions of linear ideal MHD equa-
tions for the cool plasma in the form of cylindrical modes
f(r, t) = f(r) exp(imϕ + ikzz − iωt), where kz is the longi-
tudinal wave number and ω is the frequency. They are ex-
pressed through the magnetic pressure perturbation P (r) =
p(r) + B(r)B0(r)/4π. The solution in the cord and in the
corona can be expressed in terms of the Bessel equation so-
lutions (for the kink-mode m=1):
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In the thin tube (kza � 1) approximation we take the prin-
cipal terms of the Bessel and McDonald functions at r = 0.
In the shell the radial equation for P have the form [Appert
et al., 1974]

d2P

dζ2
+ p(ζ)

dP

dζ
+ q(ζ)P = 0

p(ζ) =
5

ζ
− 2λζ(2λµζ2 + λ− 6µ)

(λ2ζ4µ + λ2ζ2 − 6λµζ2 − λ + µ)
+

2λµζ

(λµζ2 + λ− µ)

q(ζ) = −ν +
3

ζ2
− λ

−28µ + 3λ + 4λµζ2 + λ2ζ2

λ2ζ4µ + λ2ζ2 − 6λµζ2 − λ + µ
+

−4µ2ν + 4νλµ + 2λ3

(λµζ2 + λ− µ)λ
+

4µν

(λζ2 − 1)λ

Two linearly independent solutions of this equation have
poles of the first and the third orders at ζ = 0.

M(ζ) ∼ 1

ζ
N(ζ) ∼ 1

ζ3

The solution in the shell is

vrm(r) = −iω

(
C1(r)

C3(r)
(FM(r) + GN(r))+

D(r)

C3(r)
(FM ′(r) + GN ′(r))

)

Pm(r) = FM(r) + GN(r)

where F and G are arbitrary constants and the coefficients
have the following approximate expressions

D
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≈ − α2r4

ρ0V 2
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≈ − 2α2r3

ρ0V 2
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Using the principals terms in the solutions and the boundary
conditions

vri(b) = vrm(b)

vrm(a) = vre(a)

Pi(b) = Pm(b) +
B2

0ϕ(b)

4πiωb
vri(b)

Pm(a) +
B2

0ϕ(a)

4πiωa
vri(a) = Pe(a)

we obtain the dispersion equation in the zeroth order ap-
proximation [Mikhalyaev, 2005]

α2a2b2(a2 − b2)ρ0i(ω
2 − V 2

Aik
2
z)ρ0e(ω
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a2ρ0e(ω
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Aek
2
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It should be borne in mind that the tube parameters in this
equation are constrained by equilibrium conditions. This
equation have two real solutions that describe undamped
oscillations. One of them describes a fast magnetosonic
wave whose phase speed exceeds the Alfvén speed in the
corona. Therefore, it propagates radially into the surround-
ing corona, i.e., is radiated by the tube. The damping man-
ifests itself as the effect of the next order with respect to the
small kza. In the first approximation, the dispersion equa-
tion has a complex solution with a relatively small imaginary
part. We write the complex frequency as ω = ω0(1 + ε),
where ω0 is the solution of the dispersion equation in the ze-
roth order approximation, and the dimensionless quantity ε
gives the first correction. Its imaginary part determines the
damping coefficient −ω0 Im ε, while the ratio Q = −1/2 Im ε
is the Q-factor of the oscillations. For ε the following expres-
sion holds

8ω2
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α2b2ρ0i(ω
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)
= 0

[5] We applied the results obtained to the oscillations of
solar coronal loops. As the corona is characterized by Alfvén
speeds much larger than the sound speed, we have chosen
VAe = 700 km s−1. The density in the cord ρ0i = 5ρ0e,
and the characteristic density ρ0 = 5ρ0e was chosen for the
shell. The scale parameter α = 0.25 cm−1. The Q-factor
increases with decreasing wave number, i.e., with increasing
tube length L. For example, at the tube radius a=12 Mm
and the cord radius b=2 Mm, the Q-factor increases from
19.7 to 84.9 as the tube length changes from 11 Mm to
230 Mm. The oscillation period takes on values within the
range 239 to 497 s. The Alfvén speed in the shell is the same,
939 km s−1. The Q-factor and the period increase with cord
radius. If b changes from 1 to 4 Mm (at a = 12 Mm and
L = 130 Mm), then the period increases from 270 to 328,
while the Q-factor increases from 18.1 to 190. Our calcu-
lations show that Q-factors close to their observed values
can be obtained [Nakariakov et al., 1999; Ofman and As-
chwanden, 2002]. Thus, a double magnetic flux tube with
a strongly twisted magnetic field in the shell can serve as
an acceptable model for coronal loop, and the observed fast

damping of transverse loop oscillations can be explained in
terms of the effective radiation of fast magnetosonic waves
into the surrounding corona by the loop.
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