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[1] Currently, in geophysics, there is growing interest about the deep layers of the Earth.
Information about these layers may be obtained from analysis of the electromagnetic field at
relatively low frequencies. Low-frequency antennas are usually very cumbersome. One aim
is creation of an antenna that would be effective at low frequencies and compact enough. To
do this, electromagnetic fields of ground-based sources in the presence of a plasma coating
are studied. Such problems for the well-conducting Earth’s surface are solved approximately
using the equivalent theorem. This makes it possible to find the field at any distance from
the source, including the Earth’s surface. For a coating in the form of a two-layer plasma
semispheroid, the solution is looked for in spheroidal functions attracting the theorem of
addition. The influence of a plasma coating of high curvature is analyzed in the quasi-static
approximation. INDEX TERMS: 2499 Ionosphere: General or miscellaneous; 2443 Ionosphere: Midlatitude

ionosphere; 2427 Ionosphere: Ionosphere/atmosphere interactions; KEYWORDS: Earth’s surface; Plasma;

Resonance.
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1. Introduction

[2] If the source has a plasma coating of the spherical or
cylindrical shape [Bichoutskaia and Makarov, 1999; Novikov
and Soloviev, 1996], it may lead to a considerable intensifi-
cation of the radiation field (by 1–2 orders of magnitude) at
resonance frequencies depending on the coating shape and
plasma properties. The presence of a depleted ion layer
around the source in the plasma [Ratcliffe, 1972; Whale,
1964] is able to enhance this intensification by several times
[Bichoutskaia and Makarov, 2002, 2005; Messiaen and Van-
denplas, 1967]. In this paper we study the influence on the
radiation field of a ground-based source with the plasma
coating of a more complicated spheroidal form, and also the
value of the field for a changing form of the spheroid from
a strongly prolate to a uniformly spherical and further to a
compressed up to a strongly oblate spheroid form.

[3] The problem on the field of a ground-based source cov-
ered by a plasma semispheroid is considered in the presence
of a flat boundary with the well-conducting Earth semis-
pace. Such problem is reduced to the equivalent problem
for the given source and its image in an ideally conducting
plane (created using usual rules) located in the vacuum and
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surrounded by a plasma semispheroid and its reflection on
the same plane. A vertical electric dipole and slot gap in
a metal semispheroid are considered as the sources. In the
equivalent problem the current at the antenna clamps or the
voltage applied to the gap are doubled for these sources.
We will consider these problems in a sequence and will call
the resonance taking place in both cases as a resonance in
current in the problem with a dipole and as a resonance in
voltage in the problem with the slot antenna.

2. Formulation of the Problem for the
Dipole Antenna

[4] We consider first an equivalent problem for a prolate
plasma spheroid with the large and small semiaxes a and b
and the eccentricity e located in the medium with the rela-
tive dielectric permeability ε3. In the center of the spheroid
an electrical dipole oriented along the rotation axis of the
spheroid is located (Figure 1). We assume that the relative
dielectric permeability of the cold isotropic plasma is

ε = 1−
ω2

p

ω2(1 +
iν

ω
)

at the chosen time dependence of the form exp(−iωt), where
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Figure 1. Geometry of a dipole antenna surrounded by a
plasma spheroid.

ωp is the circular plasma frequency of electrons and ν is the
effective collision frequency.

[5] We assume that the depleted ion coating formed around
the transmitter has a form of a spheroid with the semiaxes
a1 and b1 and with the same eccentricity e. The spheroid is
filled in by the medium with the relative dielectric perme-
ability ε1. The distance between the focal points of the inner
and outer spheroids will be designated 2d1 and 2d, respec-
tively. Below we will take the electrical dimensions of the
spheroids to be small, i.e., ka � 1 and k

√
|ε|a � 1, where

k is the wave number in the vacuum.
[6] We will create the solution of the Maxwell equations

in the outer medium ε3 (Im ε3 > 0) satisfying the principle
of radiation at the infinity using the system of spheroidal
functions [Morse and Feshbah, 1953] determined in the pro-
late spheroidal coordinate system ξ, η, ϕ (1 ≤ ξ < ∞,
−1 ≤ η ≤ 1) related to the outer spheroid

Hϕ =
∑

DnS1n(d̄ε3 , η)he
(1)
1n (d̄ε3 , ξ)

Eη = − i

ε3d̄

∑
DnS1n(d̄ε3 , η)hė

(1)
1n (d̄ε3 , ξ) (1)

Here and below the values of the magnetic and electric
fields are multiplied by the impedance of the free space
Z0 =

√
µ0/ε0 and by

√
ξ2 − η2, respectively. The follow-

ing designations are used in (1): S1n(d̄ε3 , η) is the angular

spheroidal function of the first kind and he
(1)
1n (d̄ε3 , ξ) is the

function related to the radial spheroidal functions of the first
kind je1n(d̄ε3 , ξ) and second kind ne1n(d̄ε3 , ξ) by the formu-
lae

he
(1)
1n (d̄ε3 , ξ) = je1n(d̄ε3 , ξ) + ine1n(d̄ε3 , ξ)

hė
(1)
1n (d̄ε3 , ξ) ≡

d

dξ
(
√
ξ − 1he

(1)
1n (d̄ε3 , ξ))

here d̄ε3 = kd
√
ε3, and d̄ = kd. In the region of the depleted

ion layer ε1, we will create the solution using the system of
functions determined in the coordinate system related to the
inner spheroid:

Hϕ =
∑

S1n(d̄1ε1 , η)[Anhe
(1)
1n (d̄ε3 , ξ)+

R1
nje1n(d̄1ε1 , ξ)] (2)

Eη = − id̄1

d̄2
1ε1

∑
S1n(d̄1ε1 , η)[Anhė1n(d̄1ε1 , ξ)+

R1
njė1n(d̄1ε1 , ξ)] (3)

jė1n(d̄1ε1 , ξ) ≡
d

dξ
(
√
ξ − 1je1n(d̄1ε1 , ξ))

here d̄1ε1 = kd1
√
ε1, and d̄1 = kd1.

[7] In the region of the plasma layer with the relative di-
electric permeability ε, we will create the solution using two
systems of functions determined in the coordinate systems
related to both inner and outer spheroids:

Hϕ = H(1)
ϕ +H(2)

ϕ

Eη = E(1)
η + E(2)

η

H(1)
ϕ =

∑
D1

nS1n(d̄1ε, η)he
(1)
1n (d̄1ε, ξ)

E(1)
η = − id1

d̄2
1ε

∑
D1

nS1n(d̄1ε, η)hė
(1)
1n (d̄1ε, ξ) (4)

H(2)
ϕ =

∑
RnS1n(d̄ε, η)je1n(d̄ε, ξ)

E(2)
η = − id̄

d̄2
ε

∑
RnS1n(d̄ε, η)jė1n(d̄ε, ξ) (5)

here d̄1ε = kd1
√
ε, and d̄ε = kd

√
ε.

[8] The following designations are used in expressions (1)–
(5): An are the multipliers of excitation of the field of the
electric dipole in the unlimited space with the relative di-
electric permeability ε1, R

1
n and D1

n are the reflection and
transmission coefficients, respectively, for the boundary be-
tween the inner medium and the plasma coating, and Rn

and Dn are the reflection and transmission coefficients, re-
spectively, for the boundary between the plasma coating and
the outer medium.

[9] The excitation coefficients An of the electromagnetic
field of the source located in the center of the spheroid have
the form

An =
Gk
√
ε12n(n+ 1)

N1nd̄1ε1

√
ξ20 − 1

je1n(d̄1ε1 , ξ0)
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G =
iZ0

4π
Ilk
√
ε1

N1n =

1∫
−1

S1n(d̄1ε1 , η)
2dη

where ξ0 is the radial coordinate of the source, I is the cur-
rent at the transmitter entrance, and l is its effective length
not exceeding the length of the rotation axis of the inner
spheroid and satisfying the condition kl

√
ε1 � 1. According

to Morse and Feshbah [1953], in the quasi-static approxima-
tion (d̄1ε1 � 1), one can choose among An the main coeffi-
cients corresponding to the index n = 1. Therefore one can
limit expansions (2)–(3) by one spheroidal wave with n = 1.

[10] Writing the boundary conditions of continuity of the
tangential components of the field on the surface of both
spheroids and using for the spheroidal functions the theo-
rem of addition [Ivanov, 1968] (which makes it possible to
reexpand the solution of one system of functions in terms
of another system of functions related to the outer spheroid
and also to expand the angular spheroidal functions in the
plasma medium on the angular functions of the inner or
outer medium

S1l(d̄1ε, η) =
∑
n=1

B1nS1n(d̄, η)

B1n =
1

N1n

1∫
−1

S1l(d̄1ε, η)S1n(d̄, η)dη

we obtain an infinite system of algebraic equations. In the
quasi-statistics condition, one can limit the angular function
expansion with the accuracy of the terms of the order of
O[|d̄1ε|2] and O[|d̄ε|2] by the main first term of the expansion
with the coefficient B11 = 1 + O[|d̄1ε|2]. Similar error is
obtained using the first term in the expansion in the theorem
of addition.

[11] Then confining ourselves by the main terms of the
expansions we obtain the boundary conditions on the inner
ξ = ξ1 and outer ξ = ξa surfaces of the plasma spheroidal
layer in the form of a truncated system of four algebraic
equations

Anhe
(1)
1n (d̄1ε1 , ξ1) +R1

nje1n(d̄1ε1 , ξ1) =

D1
nhe

(1)
1n (d̄1ε, ξ1) +Rnje1n(d̄1ε, ξ1)

Anhė
(1)
1n (d̄1ε1 , ξ1) +R1

njė1n(d̄1ε1 , ξ1) =

ε1
ε

[D1
nhė

(1)
1n (d̄1ε, ξ1) +Rnjė1n(d̄1ε, ξ1)]

D1
nhe

(1)
1n (d̄ε, ξa) +Rnje1n(d̄ε, ξa) = Dnhe

(1)
1n (d̄ε3 , ξa)

Figure 2. Geometry of a plasma-coated spheroidal an-
tenna.

D1
nhė

(1)
1n (d̄ε, ξa) +Rnjė1n(d̄ε, ξa) = Dn

ε

ε3
hė

(1)
1n (d̄ε3 , ξa) (6)

for n = 1. From equation system (6), we find the coefficient
D1 of the electromagnetic field propagation into the outer
medium. Before finding expression for D1, we will formulate
the second equivalent problem in which a slot spheroidal
antenna is used as an emitter.

3. Formulation of the Problem for a Slot
Antenna

[12] Consider an ideally conducting slot antenna having
the shape of a spheroid with the interfocal distance 2d0 and
the large and small semiaxes a0 and b0, respectively, located
in the medium with the relative dielectric permeability ε3
and surrounded by a two-layer plasma coating (Figure 2).
The outer surface of the first layer ε1 (the depleted ion coat-
ing) is formed (in the same way as in the first problem)
by the spheroid surface with the interfocal distance 2d1 and
semiaxes a1 and b1. The second plasma layer ε is limited
from the outside also by the spheroid surface with the inter-
focal distance 2d and semiaxes a and b. All three spheroids
have the same origin of spheroidal coordinates and equal
eccentricities e.

[13] The solution of the problem for an ideally conducting
prolate spheroidal slot antenna put into a prolate two-layer
plasma spheroid will be constructed in three systems of pro-
late spheroidal coordinates having the joint beginning. The
slot antenna consists of two metal semispheroids (ξ = ξ0)
separated by a slot at |η| < ∆η (∆η � 1) to which the volt-
age V is applied. According to the commonly accepted state-
ment [Wait, 1966], the tangential component of the electric

3 of 10



GI3009 bichoutskaia and makarov: electromagnetic field GI3009

field of the slot antenna Eη, different from zero at the gap,
is determined by the constant value independent of η

Eη =

{
0 if − 1 < η < −∆η, −∆η < η < 1

Ea0
η if −∆η < η < ∆η

(7)

At a small width of the gap 2∆η, this value is related to the
voltage V by the formula

V =

+∆η∫
−∆η

Eη(ξ0, η)hηdη ≈ Ea0
η ξ02d0∆η

The solution of the Maxwell equations in the outer medium
ε3 satisfying the principle of emission at the infinity will take
the same form (1) as in the first problem.

[14] In the region of the depleted ion layer ε1, the solution
will be constructed (contrary to the first problem) using two
systems of functions determined in the coordinate systems
related to the inner and intermediate spheroids:

Hϕ = H(0)
ϕ +H(1)

ϕ

Eη = E(0)
η + E(1)

η

H(0)
ϕ =

∑
AnS1n(d̄0ε1 , η)he

(1)
1n (d̄0ε1 , ξ)

E(0)
η = − id̄0

d̄2
0ε1

∑
AnS1n(d̄0ε1 , η)hė

(1)
1n (d̄0ε1 , ξ) (8)

H(1)
ϕ =

∑
R1

nS1n(d̄1ε1 , η)je1n(d̄1ε1 , ξ)

E(1)
η = − id̄1

d̄2
1ε1

∑
R1

nS1n(d̄1ε1 , η)jė1n(d̄1ε1 , ξ) (9)

here d̄0 = kd0 and d̄0ε1 = kd0
√
ε1.

[15] In the region of the plasma layer with the relative
dielectric permeability ε, the solution (in the same way as
in the first problem) will take the form (4)–(5).

[16] At the presence of the boundary ξ = ξ1 at the spheroid
surrounding the slot antenna, to find An one should to
equate the electrical components of the field (7), (8) and
(9) on the surface of the inner spheroid ξ = ξ0 preliminar-
ily reexpanding system of functions (9) over the system of
spheroidal functions (8) with the help of the theorem of ad-
dition. As a result, we obtain the infinite system of related
algebraic equations. Confining ourselves by the main first
term in the expansion with allowance for small parameters
|d̄1ε1 | and |d̄0ε1 |, we obtain the solution of the unrelated
equation system in the form of the following relation for the
coefficients of expansions (8) and (9)

An = Gn −R1
nf1n

Gn =
1

N1n

ikε1V

hė1n(d̄0ε1 , ξ0)

f1n =
jė1n(d̄0ε1 , ξ0)

hė1n(d̄0ε1 , ξ0)
(10)

where the normalizing multiplier for the angular functions
N1n for n = 1 has the representation

N11 ≈
4

3
+

16

75
d̄2
0ε1 + . . .

at small |d̄0ε1 | � 1. The harmonics with n > 1 in (8)
have the amplitudes An of the smaller order O(|d̄n+1

0ε1
|) as

compared to n = 1 and will not be taken into account below.
[17] Reexpanding in the same way the system of functions

(5) over the system (4), presenting the angular functions
of the plasma medium in the form of the expansion over
the angular functions of the inner and outer medium, and
confining ourselves by the main terms of the expansions,
we obtain for the boundary conditions the same system of
four algebraic equations (6) for n = 1, but with the An

coefficients from (10).

4. Solution in Quasi-static Approximation
for the Dipole and Slot Antennas

[18] For small electric dimension of the spheroid we take
into account the following representation of radial spheroidal
functions [Morse and Feshbah, 1953]

je11(h̄, ξ) =
h̄

3

√
ξ2 − 1[1 +O(h̄2(ξ +

√
ξ2 − 1)2)]

he11(h̄, ξ) = − 3i

2h̄2
√
ξ2 − 1

ψ(ξ)

ξ
(1 + iΓ)×

[1 +O(h̄2(ξ +
√
ξ2 − 1)2)] (11)

ψ(ξ) = ξ2 − ξ(ξ2 − 1) arccth ξ

Γ =
2

9
h̄3 ξ

ψ(ξ)
(ξ2 − 1)

Here the variables h̄ and ξ take the values of the first and sec-
ond arguments of spheroidal functions in (6). As a result of
solution of system (6) we obtain for the transmission coeffi-
cients into the outer medium expressions containing explicit
dependency on the problem parameters.

[19] For the prolate plasma spheroid surrounding a source
with fixed current at the antenna clamps, we have the fol-
lowing expression for the propagation coefficient DI of the
leading harmonic

DI = D0IKI
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D0I = iIl
kZ0

4π

KI =
{
ε(1 + Ψ)2[1 +O(d̄2(ξa +

√
ξ2a − 1)2)]

}/
{

(1 + εΨ)(ε+ Ψ)− α3Ψ(1− ε)2+

iΓ(1− α3)(1− ε)(ε+ Ψ)
}

(12)

Ψ =
1− ψ
ψ

Γ =
2

9
ā3 1

ψ

(
b

a

)2

α =
a1

a

For the prolate spheroidal antenna covered by a plasma
sheath with the fixed voltage at the slot gap, the transmis-
sion coefficient DV of the first harmonics has the form

DV = D0V KV D0V =
kV

N11

b̄20
3(1− ψ)

b̄0 = kb

KV =
{
ε[1 + Ψ][F + Ψ + iΓα3(F − 1)]×

[1 +O(d̄2(ξa +
√
ξ2a − 1)2)]

}/
{
(Ψ + εF )(1 + εΨ) + α3Ψ(ε− 1)(1− εF )−

iΓ[(ε− 1)(Ψ + εF ) + α3(1− εF )(ε+ Ψ)]
}

(13)

F = Ψ
1− α3

0

Ψ + α3
0

α0 =
a0

a1

where the fact is taken into account that the depleted ion
layer of the coating and the outer medium are vacuum:
ε1 = ε3 = 1. The geometrical parameters α0 and α charac-
terize the relative thickness of the depleted ion and plasma
coatings, respectively.

[20] We will call the functions KI (12) and KV (13), what
at the absence of the plasma coating become equal to unity,
functions of influence of the two-layer plasma coating on
current and voltage.

[21] In the case of a oblate plasma spheroidal coating
for the same sources considered above, the solution of the
boundary problem constructed in oblate spheroidal variables
using oblate angular and radial spheroidal functions leads
for the D̃I and D̃V transmission coefficients to expressions
similar to (12) and (13) where ψ(ξ), Γ, and D0V should be
replaced by

ψ̃(ξ) = −ξ2 + ξ(ξ2 + 1) arccot ξ

Γ̃ =
2

9
ā3 1

ψ̃

(
b

a

)

D̃0V =
kV

N11

ā2
0

3(1− ψ̃)

These substitutions should be performed always transferring
from the prolate shape of the spheroid to the oblate one, so
below we will present the expression only for the prolate
shape of the spheroid.

[22] The value of D0V characterizing the radiation field
of a slot antenna without a coating located in the vacuum
reaches the maximum value for the spherical shape of the slot
antenna with the radius a0 (ψ = 2/3), because for strongly
prolate spheroidal antenna this value decreases as

ā2
0

3| ln b0
a0
|

whereas for strongly oblate one (when ā2
0/3(1− ψ̃) ≈ ā2

0/3)
it appears by a factor of three less than for the spherical one.

[23] It is worth noting that for the dipole antenna located
within a plasma spheroid, expression (12) does not allow
for the limiting transition to the case of a one-layer plasma
coating (α = 0 ) [Bichoutskaia and Makarov, 2002, 2005]. At
similar transition (α0 = 1) expression (13) becomes equal to
the expression for the transmission coefficient for the one-
layer plasma coating of the slot antenna.

[24] We substitute transmission coefficients (12) and (13)
into the components of the electric field (1) in the outer
medium. For the wave zone of the source |d̄ε3ξ| � 1 we
use asymptotics of radial spheroidal functions [Morse and
Feshbah, 1953]

he
(1)
11 (d̄ε3 , ξ) =

1

d̄ε3 , ξ
exp(id̄ε3 , ξ) +O

(
1

ξ2

)
and assuming ε3 = 1 we come to the electromagnetic field
components in the vacuum in a spherical coordinate system.

Er =
2i

kr

exp(ikr)

r
cos θD

Eθ =
exp(ikr)

r
sin θD

Hϕ =
exp(ikr)

r
sin θD (14)

where D has the value of (12) or (13) for the problem with
an electric dipole or slot antenna.

[25] According to (14) the tangential component of the
field Er on the Earth’s surface (cos θ = 0) becomes zero,
as it should be for the infinite conducting Earth’s surface.
On the finitely conducting underlying surface at such dis-
tances the wave by its structure is close to a plain one, and
the tangent component of the field may be obtained from
the vertical component Er ≈ [1/

√
ε(x, y)]Eθ which is de-

termined from formula (14) multiplied by the attenuation
function containing properties of the propagation path.
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5. Resonant Frequencies

[26] Now we study some features of the character of the
dependence of the functions of influence KI (12) and KV

(13) on the changing shape and relative thickness of two
layers of the plasma coating. It is worth noting that because
of the dispersion properties of the plasma one can find a
frequency at which the values of |KI | and |KV | reach the
maximum (resonance) value. At small losses to emission
(Γ � 1) and small thermal losses in the plasma (Imε �
|Reε|) when Reε ≈ 1 − ω2

p/ω
2 such resonant frequency in

current is determined from the condition of becoming zero
of the real part of the denominator (12)

(Ψ + Re ε)(1 + ΨRe ε)−

α3Ψ(Re ε− 1)2 = 0 (15)

or the real part of the denominator (13) for the resonance in
voltage

(Ψ + FRe ε)(1 + ΨRe ε)+

α3Ψ(Re ε− 1)(1− FRe ε) = 0 (16)

Equations (15) and (16) are biquadratic relative to the res-
onant frequency. The roots of the each equation form two
branches at a change of the spheroid shape Ψ from strongly
prolate to strongly oblate.

[27] The roots of equation (15) (at α > 0) have the form

ω2

ω2
p

=
1

2
(1±

√
1− 4ψ∗)

ψ∗ = ψ(1− ψ)(1− α3) (17)

and form two branches depending on the spheroid shape b/a
at its fixed filling in by the vacuum α.

[28] At continuous changes in the spheroid shape from
strongly prolate one (Ψ ≈ 1, Ψ∗ ≈ 0) to strongly oblate
one (Ψ̃ ≈ 1, Ψ̃∗ ≈ 0), the resonant frequency (17) varies
from the exit point (the resonance frequency at b/a = 0 for
the prolate spheroid) to the coinciding to it entrance point
(the resonance frequency at b/a = 0 for the strongly oblate
spheroid) equal to ω(1) ≈ 0 and ω(2) ≈ ωp for the low-
frequency and high-frequency branches, respectively. It is
worth noting that for a small filling in of the plasma spheroid
by vacuum (α3 � 1), the approximate expressions for reso-
nant frequencies (17) for the low-frequency (ω(1)) and high-
frequency branches (ω(2)) for the prolate spheroid

ω(1) ≈ ωp

√
1− ψ

and

ω(2) ≈ ωp

√
ψ

and for the oblate spheroid

ω(1) ≈ ωp

√
ψ̃

and

ω(2) ≈ ωp

√
1− ψ̃

do not describe their values for the oblate shape of the
spheroid in the vicinity of Ψ̃ = 1/2 (a ≈ 2b), where the
resonant frequencies (17) have an extreme(

ω

ωp

)(1)

extr

=

√
1− α

√
α

2

(
ω

ωp

)(2)

extr

=

√
1 + α

√
α

2
(18)

These values (18) tend to the entrance (or exit) points of its
branches with an increase in the filling in α of the spheroid
by vacuum, that is, the curves of the dependence (17) on
the spheroid shape b/a become less steep. In more detail
for the fixed α, the position of resonance frequencies (17)
as a function of b/a for the prolate spheroid and of the in-
verse parameter a/b for the oblate spheroid is shown in Fig-
ure 3a. Solid and dashed curves show the low-frequency and
high-frequency branches, respectively, for two values of the
relative thickness of the plasma coating: α = 0.2 and 0.8.
The calculation result illustrate the shift of the resonance
frequency to the limiting values ω(1) = 0 and ω(2) = ωp as
the vacuum cavity becomes larger in volume (α = 0.8). For
the small vacuum filling in (α = 0.2) resonance frequencies
(17) have a well-pronounced extreme for the oblate shape of
the spheroid.

[29] In the case of the slot antenna, the roots of equation
(16) for the resonant frequencies have a form of complicated
radicals, so their simple analytical dependence on the prob-
lem parameters may be obtained only in two particular cases:
F = 1 and F = 0.

[30] For F ≈ 1 we have a two-layer plasma coating of a
weakly prolate spheroidal shape with a relatively thick first
layer (α3

0 � 1, α3
0 � Ψ), and equation (16) coincide with

resonant equation (15), the roots of which are presented by
expression (17). Thus, in this case, the frequencies for the
resonances in voltage and current coincide. These resonant
frequencies are shown in Figure 3a.

[31] At the absence of the depleted ion layer (F = 0, α0 =
1), equation (16) is a resonance one for the spheroidal slot
antenna with one-layer plasma coating ε. The roots of (16)
have one frequency branch

ω = ωp

√
1− ψ∗

to which (as we will see below) the resonant frequencies of
the high-frequency branch (16) tend with a decrease of the
thickness of the first layer (α0 → 1). These frequencies are
shown in Figure 3b for two values of the relative thickness
of the plasma coating: α = 0.2 and 0.8.

[32] For the α0 values different from zero and unity,
the regularities in the behavior of the resonant frequency
(18) (related to ωp) are shown in Figure 3c as a function
of the spheroid shape by solid and dashed curves for the
low-frequency and high-frequency branches, respectively, for
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three values of the relative thickness of the first layer α0.
Curves 1 and 2 correspond to α0 = 0.2, α = 0.2 and 0.8;
curves 3 and 4 correspond to α0 = 0.8, α = 0.2 and 0.8; and
curves 5 and 6 correspond to α0 = 0.99, α = 0.2 and 0.8.

[33] For the relatively thick first layer (F ≈ 1, α3
0 � 1) the

dependence of the resonant frequencies in voltage (curves in
Figure 3c) coincide with the corresponding dependence for
the resonance in current (curves that correspond to α = 0.2
and 0.8 in Figure 3a).

[34] In the case when the thickness of the first layer be-
comes too small (F ≈ 0, α0 ≈ 1) the dependence of the
resonance frequencies of the high-frequency branch (dashed
curves 5 and 6 in Figure 3c) on the spheroid shape coin-
cide with the corresponding dependence for the spheroidal
slot antenna with a one-layer plasma coating (curves 0.2 and
0.8 in Figure 3b). The branch of lower resonance frequencies
(solid curves 5 and 6 in Figure 3c) shifts to the region ω ≈ 0.
Thus with a decrease of the thickness of the first layer of the
coating, the branch of higher resonance frequencies transfers
into the resonance frequencies for a slot antenna with an one-
layer plasma coating, whereas the branch of lower resonance
frequencies disappears. Therefore one may take that for the
resonance in voltage the high-frequency and low-frequency
branches characterize a resonance of the plasma with the
outer and inner vacuum, respectively. We will draw the fi-
nal conclusion after evaluation of the value of the function
of influence for the both branches of resonant frequencies.

6. Resonant Function of Influence

[35] We estimate at resonance frequencies the value of the
function of influence in current (12), which at the resonant
condition (15) (taking into account small thermal losses in
the plasma) in a main (zero) approximation over small pa-
rameter (electrical dimension of the spheroid) has the form

|KI | =
1

ψ∗
(
1− 1

εRe

)×

1∣∣∣∣εIm (
1 +

1

εRe

)
− Γs

(
εReψ

1− ψ + 1

)∣∣∣∣ (19)

where εRe = 1 − ω2
p/ω

2, εIm = νp(ω3
p/ω

3), and νp = ν/ωp.
The analytical dependence of (19) on the spheroid shape Ψ
and its filling in by the vacuum α is rather complicated be-
cause of the presence of radicals in (17), except some limited
region of the values of Ψ and α which we will consider below.

[36] The estimation of the resonant value of the function
of influence at the extreme frequency (13) typical for an
oblate spheroid gives the following dependence on the rela-
tive thickness of the plasma layer

|K(1,2)
I | =

√
1− α3

2
√

2α3/2
×

Figure 3. Branches of high (dashed curves) and low (solid
curves) resonant frequencies as a function of b/a (prolate
spheroid) and of a/b (oblate spheroid) for α = 0.2 and 0.8 for
(a) a dipole surrounded by two-layer plasma spheroid, (b) a
plasma-coated spheroidal antenna with α0 = 1, and (c) a
two-layer plasma-coated spheroidal antenna for α0 = 0.2
(α = 0.2 (curve 1) and α = 0.8 (curve 2)), α0 = 0.8 (α = 0.2
(curve 3) and α = 0.8 (curve 4)), and α0 = 0.99 (α = 0.2
(curve 5) and α = 0.8 (curve 6)).

√
1± α3/2

νp +
1

18
ā3

p
b

a
(1− α3)(1∓ α3/2)

(20)

With a decrease of the filling in of the oblate plasma spheroid
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by the vacuum cavity α, the value (20) increases consider-
ably and exceeds the resonant coefficient of propagation for
a sphere with a cavity [Bichoutskaia and Makarov, 2005].
Therefore the oblate shape of the plasma spheroid appears
more preferable than the spherical one at the resonance in
current.

[37] One can see in more detail the dependence of the
resonant function of influence in current (19) on the spheroid
shape b/a and its filling in α by vacuum in Figure 4a, where
the function |KI | is shown as a function of the spheroid
shape by solid and dashed curves for the low-frequency and
high-frequency branches at two values of the second layer
thickness: α = 0.2 and 0.8. The function |KI | in Figure 4a
is normalized to the modulus of the resonant function of
influence in current |KI0| of the plasma sphere with radius
α surrounding the electrical dipole at the resonant frequency
ωp/
√

3

|KI0| =
1

νp

√
3 +

2
√

3

27
ā3

p

āp ≡ a
ωp

c
(21)

The value |KI0| (21) exceeds the unity by 1 or 2 orders of
magnitude depending on how small are the loss parameters
νp and ā3

p. We assumed at calculations that the terms in the
denominator of (21) are equal, i.e., νp

√
3 = (2

√
3/27)ā3

p =
0.01.

[38] Because of the complexity of expression (13), one can
obtain the explicit analytical dependence of the resonant
function in voltage KV on the problem parameters only at
F = 1 and F = 0.

[39] In the case when a spheroidal coating is not strongly
prolate and has a relatively thick first layer (α3

0 � 1, α3
0 �

Ψ, F ≈ 1), the resonant function |KV | (13) appears close to
the resonant function of influence in current |KI |.

[40] In the case F = 0 (α0 = 1, i.e., there is no first layer),
the function KV (13) is a resonance function of influence in
voltage of a one-layer plasma coating of the spheroidal slot
antenna [Bichoutskaia and Makarov, 2003]

|KV 1| =
1

νp

ψ∗

√
1− ψ∗ + Γ

1− ψ∗

1− ψ

Γ =
2

9

ā3
p

ψ

( b
a

)2
(1− ψ∗)3/2 (22)

The function decreases monotonously with a change of the
spheroid shape Ψ from strongly prolate to strongly oblate
one. This dependence of the function |KV 1| normalized to
(21) is shown in Figure 4f for two values of the thickness of
the plasma layer α0 = 0.2 and 0.8.

[41] For the decreasing relative thickness of the first layer
(0.2 ≤ α0 < 1) the resonant function |KV | (13) normalized
to (21) versus the changing shape of the spheroid is shown in
Figure 4b, Figure 4c, Figure 4d, and Figure 4e by solid and
dashed curves for the low-frequency and high-frequency res-
onances, respectively, at two values of the relative thickness
of the plasma layer α = 0.2 and 0.8.

[42] For the relatively thick first layer with α0 = 0.2,
the function |KV | (curves 0.2 and 0.8 in Figure 4b) does

not differ from the resonant function of influence in current
|KI | (curves 0.2 and 0.8 in Figure 4a), having for the oblate
spheroid shape (α ≈ 2b) the maximum value exceeding by an
order of magnitude the resonant function for sphere |KI0|.
With a decrease of the first layer thickness for α0 = 0.8 and
α0 = 0.9 (curves 0.2 in Figures 4c and 4d) the extreme value
of |KV | (almost not changing in magnitude) shifts into the
region of more prolate spheroid shape. In the case of the
spherical shape of the plasma coating, the value of the res-
onant function of influence |KV | may considerably exceed
the value |KI |, the latter statement following from the com-
parison at a = b of the values of these functions shown by
curves 0.2 in Figures 4c and 4a. At further depletion of
the thickness of the first layer (α0 = 0.9 and α0 = 0.999),

the high-frequency resonance |K(2)
V | (dashed curves in Fig-

ures 4d and 4e) is transformed into the resonance |KV 1| of
a one-layer plasma coating (curves 0.2 and 0.8 in Figure 4f).
The latter resonance has a maximum value at the strongly
prolate spheroid shape, for which the resonant value of the
field is not so high because of low values of the excitation
coefficient D0V .

[43] One can show that at a small relative thickness of
the first layer δΨ � 1, (δ = 1− α3

0) for the branch of lower
resonant frequencies in voltage (16)(

ω(1)

ωp

)2

≈ δ̂
ψ∗

1− ψ∗

δ̂ = δ(1− ψ)

the modulus of the function of influence (13)

|K(1)
V | ≈

√
δ̂ψ∗

νp(1− ψ∗)3/2

decreases down to zero with a decrease of the thickness of
the first layer. We will take the low-frequency resonance
vanishing at the first layer thickness δ̂0 ≈ (ν2

p/ψ
∗)(1−ψ∗)3,

at which the value |K(1)
V | becomes equal to unity.

[44] The modulus of the function of influence (13) |K(2)
V |

for the branch of higher resonance frequencies (16) is close
to the modulus of the resonance function of influence |KV 1|
of a one-layer plasma coating (22). This is confirmed by the
comparison of dashed curves in Figures 4e and 4f.

[45] Thus, with a decrease of the thickness of the first layer
of the plasma coating, the low-frequency resonant function
in voltage |K(1)

V | ≈ 0 disappears, whereas the high-frequency

function |K(2)
V | tends to |KV 1|. Therefore one can interpret

the low-frequency resonance in voltage as a resonance of the
plasma with the inner vacuum unlike the resonance in cur-
rent [Bichoutskaia and Makarov, 2002, 2005].]

7. Radiation Resistance and Input
Impedance

[46] The expression for the power P rad and resistance Rrad

of radiation of the source with the given current at the an-
tenna clamps
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Figure 4. High- (solid curves) and low-frequency (dashed curves) resonant functions of influence versus
b/a (prolate spheroid) and of a/b (oblate spheroid) for α = 0.2 and 0.8 for two-layer plasma spheroid
surrounding the dipole and two-layer plasma coating of spheroidal antenna (a) at α0 = 0, (b) α0 = 0.2,
(c) α0 = 0.8, (d) α0 = 0.9, (e) α0 = 0.999, and (f) α0 = 1.
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P rad = πr2
π∫

0

EθH
∗
ϕ sin θdθ

∣∣∣
r→∞

=
1

2
I2Rrad

leads according to (14) and (12) to the following expression
for the resistance of this source with a plasma coating

Rrad = Rrad
0 |KI |2

where Rrad
0 = 20(kl)2 is the resistance of the radiation of

the source without a coating. This expression shows that
the resistance or power of the radiation at the resonance at
the same conducted current increases according to (20) by
2–4 orders of magnitude if the function of influence increases
by 1–2 orders of magnitude.

[47] The estimate of the input impedance Z of the emitter
on the basis of the results of equations (6) solution relative
to the reflection coefficient R1

n shows that the ratio ZIm/ZRe

not at the resonance is high O(1/Γα3). At the resonance
frequency, this ratio having the value O(νp) decreases by
almost 4 orders of magnitude if Γ ≈ νp ≈ 0.01.

[48] The estimate of the power P rad and conductivity Y rad

of the radiation of a spheroidal slot antenna surrounded by
a two-layer plasma coating

P rad = πr2
π∫

0

EθH
∗
ϕ sin θdθ

∣∣∣
r→infty

=
1

2
V 2Y rad

taking into account expressions (14) for the tangential com-
ponents of the field in the wave zone of the source, shows
that the radiation power

P rad =
4π

3Z0k2
|D̂0|2|KV |2

contains the function of influence squared. At the resonant
frequency at fixed voltage at the antenna gap, each compo-
nent of the field according to (13) increases by 1–2 orders
of magnitude (and in some cases by 3 orders). The power
or conductivity of the radiation increases by 2–4 orders of
magnitude (or more), being maximal for some shape of the
spheroid and relative thickness of the plasma layers.

[49] The value of the complex entrance conductivity esti-
mated on the basis of the Hϕ component of the field at the
antenna gap under very thin first plasma layer (F ≈ 0 or
α3

0 ≈ 1) shows that for the low-frequency branch the ratio

|ImY (1)|/ReY (1) ≈ O(νp/
√
δ̂) is small by the magnitude at

the first layer thickness
√
δ̂ � νp providing the presence

of a considerable resonance. The ratio ImY (2)/ReY (2) ≈
O(νp/α

3) for the high-frequency branch is also small at not
too thick second plasma layer.

8. Conclusions

[50] Thus the plasma coating of a dipole antenna at fixed
current at its clamps (or of a slot antenna at fixed voltage at

its gap) at some frequencies promote a considerable increase
of the field in vacuum and an increase of ReZin (ReYin for
a slot antenna) and leads to a relative decrease in ImZin

(ImYin), the latter fact making easier the coordination of
the generator to the load. The resonant value of the field
exceeds almost by 3 orders of magnitude the field of the
antenna without a coating.

[51] The shape of the spheroidal slot antenna with a two-
layer plasma coating providing the maximum resonant im-
pact on the radiation field depends on the thickness of the
first layer. With a decrease of the first layer thickness, this
shape changes from the oblate one (a/b ≈ 2) to the pro-
late one typical for a one-layer plasma coating. If there is
no coating, the maximum radiation field would be at a slot
antenna of a spherical shape.

[52] It is shown that use of a plasma coating of a dipole
or slot ground-based antenna under some conditions is able
to improve the coordination of the generator to the load
and to lead to an increase of the low-frequency field at the
Earth’s surface. That would increase the reliability of the
information on the deep layers of the Earth.
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