References

Afraimovich, E. L., and, et al. (2002), Global pattern of large-scale ionospheric disturbances during the magnetic storm on 25 September 1998 as inferred from the GPS network data, Geomagn. Aeron. (in Russian), 42, 491.

Blagoveshchensky, D. V., and, et al. (2003), Mid-latitude effects of the May 15, 1997 magnetic storm, J. Atmos. Sol. Terr. Phys., 65, 203.

Buonsanto, M. J. (1999), Ionospheric storms: A review, Space Sci. Rev., 88, 563.

Buonsanto, M. J., S. A. Gonzalez, G. Lu, B. W. Reinisch, and J. P. Thayer (1999), Coordinated incoherent scatter radar study of the January, 1997 storm, J. Geophys. Res., 104, 24,625.

Burns, A. G., T. L. Kileen, and R. G. Roble (1991), A theoretical study of thermospheric composition perturbations during an impulsive geomagnetic storm, J. Geophys. Res., 96, 14,153.

Danilov, A. D., and L. D. Belik (1991), Thermospheric interaction during ionospheric storms, Geomagn. Aeron. (in Russian), 31, 209.

Danilov, A. D., and J. Lastovicka (2001), Effects of geomagnetic storms on the ionosphere and atmosphere, Int. J. Geomagn. Aeron., 2, 1.

Emery, B. A., C. Lathuillere, P. G. Richards, R. G. Roble, M. J. Buonsanto, D. J. Knipp, P. Wilkinson, D. P. Sipler, and R. Niciejewski (1999), Time dependent thermospheric neutral response to the 2-11 November 1993 storm period, J. Atmos. Sol. Terr. Phys., 61, 329.

Field, P. R., and H. Rishbeth (1997), The response of ionospheric F2  layer to geomagnetic activity: an analysis of worldwide data, J. Atmos. Sol. Terr. Phys., 59, 163.

Forster, M., V. Mikhailov, A. Mikhailov, and J. Smilaur (1995), A theoretical interpretation of ion composition measured on board the "Active" satellite in the European sector during April 10-12, 1990 geomagnetic storm, Ann. Geophys., 13, 608.

Fuller-Rowell, T. J., M. V. Codrescu, R. J. Moffett, and S. Quegan (1994), Response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 99, 3893.

Fuller-Rowell, T. J., and M. V. Codrescu, et al. (1996), On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 101, 2343.

Hagan, M. E. (1988), Effects of geomagnetic activity in the winter thermosphere: 2. Magnetically disturbed conditions, J. Geophys. Res., 93, 9937.

Hardy, D. A., and M. V. Codrescu, et al. (1987), Statistical and functional representation of the pattern of auroral energy flux, number flux, and conductivity, J. Geophys. Res., 92, 12,275.

Kohl, H., and J. W. King (1967), Atmospheric winds between 100 and 700 km and their effects on the ionosphere, J. Atmos. Terr. Phys., 29, 1045.

Krinberg, I. A., and A. V. Tashchilin (1984), Ionosphere and Plasmasphere (in Russian), 189 pp., Nauka, Moscow.

Kurkin, V. I., O. M. Pirog, and N. M. Polekh (2004), Cyclic and seasonal variations in the ionospheric effects of geomagnetic storms, Geomagn. Aeron. (in Russian), 44, 634.

Mikhailov, A. V., and J. C. Foster (1997), Daytime thermosphere above Millstone Hill during severe storms, J. Geophys. Res., 102, 17,275.

Pirog, O. M., N. M. Polekh, and L. V. Chistyakova (2003), Peculiarities of the ionospheric response to geomagnetic storm on 25 September in the east-Asian region, Proc. SPIE Int. Soc. Opt. Eng., 5027, 332.

Prolss, G. W., and M. Ocko (2000), Propagation of upper atmospheric storm effects towards lower latitudes, Adv. Space Res., 26, 131.

Reddy, G. A., and H. G. Mayr (1988), Storm-time penetration to low latitudes of magnetospheric-ionospheric convection and convection-driven thermospheric winds, Geophys. Res. Lett., 25, 3075.

Richards, P. G., J. A. Fennelly, and D. G. Torr (1994), EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99, 8981.

Richmond, A. D., and J. A. Fennelly, et al. (1980), An empirical model of quiet-day ionospheric electric fields at middle and low latitudes, J. Geophys. Res., 85, 4658.

Rishbeth, H. (1998), How the thermospheric circulation affects the ionospheric F2  layer, J. Atmos. Sol. Terr. Phys., 60, 1385.

Rodger, A. S., G. L. Wrenn, and H. Rishbeth (1989), Geomagnetic storms in the Antarctic F  region: 2. Physical interpretation, J. Atmos. Terr. Phys., 51, 851.

Rodger, A. S., R. J. Moffett, and S. Quegan (1992), The role of ion drift in the formation of ionization troughs in the mid- and high-latitude ionosphere: A review, J. Atmos. Terr. Phys., 54, 1.

Sojka, J. J., C. E. Rasmussen, and R. W. Schunk (1986), An interplanetary magnetic field dependent model of the ionospheric convection electric field, J. Geophys. Res., 91, 11,281.

Tashchilin, A. V., and E. B. Romanova (2002), Numerical modeling the high-latitude ionosphere, in: Solar-Terrestrial Magnetic Activity and Space Environment: Proceedings of the COSPAR Colloquium Held in the NAOC in Beijing, China, September 10-12, 2001, COSPAR Colloq. Ser., 1st ed., edited by H. Wang and R. Xu, 14, p. 315, Elsevier, New York.

Tashchilin, A. V., E. B. Romanova, and B. G. Shpynev (2002), A model study of the mid-latitude ionospheric response to a strong geomagnetic storm of September 25, 1998, Proc. SPIE Int. Soc. Opt. Eng., 4678, 491.

Wrenn, G. L., A. S. Rodger, and H. Rishbeth (1987), Geomagnetic storms in the Antarctic F  region: 1. Diurnal and seasons for main phase effects, J. Atmos. Terr. Phys., 49, 901.

Zherebtsov, G. A., O. M. Pirog, and N. M. Polekh (2005), Ionospheric effects of geomagnetic storms in different longitudinal sectors, Chin. J. Space Res., 25, (5), 468.


AGU