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[1] This paper is devoted to mathematical simulation of the “Trimpi” effect on the base of
the investigations of VLF field diffraction at a three-dimensional irregularity in the lower
ionosphere. The problem of the field of a vertical electric dipole in a plain waveguide
with homogeneous properties of the Earth’s surface and inhomogeneous ionospheric wall is
considered. The irregular impedance model of the waveguide is created using the known
vertical profiles of the electron concentration and effective collision frequency. The modeled
ionospheric irregularity is considered as a finite cylinder without any limitations to its shape
and the dimensions of its base. An original asymptotic method using the apparatus of
integral equations is used for solving the diffraction problem. On the basis of the numerical
simulations performed, one can draw the following conclusions: not only the forward scatter
of the field but the backscatter as well are observed; the irregularity impact depends on the
propagation path orientation relative to the geomagnetic field, on the underlying surface
properties, and the irregularity location and its geometric dimensions. The found field
variations are of a significant character and can be detected experimentally. INDEX TERMS:
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1. Introduction

[2] The scientific community pays (especially in the re-
cent years) a great attention to studies of the phenomena
related to thunderstorm activity. It became clear relatively
recently that many of these phenomena are accompanied by
local changes in the properties of the lower ionosphere (elec-
tron concentration and collision frequency). These changes
should influence the propagation of VLF signals [Dowden
et al., 1994; Inan et al., 1991, 1995]. Because of that, the
“Trimpi” effect may be interpreted as a result of the scatter
of the electromagnetic field propagating in the wavequide
Earth–ionosphere at a local irregularity in the lower iono-
sphere. The goal of this paper is a mathematical simulation
of the Trimpi effect which is a short-time variation in the am-
plitude and phase of VLF signal caused by appearance of a
local three-dimensional perturbation in the lower ionosphere.
The experimental recordings of the amplitude and phase of
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VLF signals published by Nunn [1996] show that sudden
changes in the amplitude and phase may reach 6 dB and
10◦, respectively. Such phenomena as heating of the iono-
sphere by electromagnetic pulse of the lightning [Inan et al.,
1991], energetic electron precipitation [Rycroft, 1973], and
“cloud–ionosphere discharges” [Dowden et al., 1994] may be
causes of such changes. The Trimpi effect related to sprites
(what can be also considered as three-dimensional irregular-
ities of the propagation medium) attracts increased interest
especially recently [Rodger, 2003]. Sprites are rather rare
phenomena and it is still impossible to reproduce them in
laboratory, so for their studies all possible methods should
be studied including the VLF remote sounding method ob-
serving and studying variations in the fields of permanently
operating VLF transmitters.

[3] Numerical simulation of the process of low-frequency
electromagnetic wave propagation in the Earth–ionosphere
waveguide in the presence of a local three-dimensional irreg-
ularity (the scattering properties of which should correspond
to the currently available information on the plasma forma-
tions in the lower ionosphere) may help in choosing between
this or that theory proposed to describe the causes and de-
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velopment of the above noted phenomena. The available
observations do not provide complete information on the na-
ture of such phenomena, and their principal parameters are
known fairly approximately. One may state definitely that
such irregularity is located in the region ∼50–90 km over the
Earth’s surface, that is, in the vicinity of the lower boundary
of the ionosphere where its least ionized layers are located.
So, if one identifies the appearance of the Trimpi effect with
a sudden appearance of a three-dimensional local irregular-
ity in the lower ionosphere, the variations in the amplitude
and phase of the received signal at a particular radio wave
propagation path may be explained by the scatter of radio
waves at such irregularity. In this case one has to assume
that the irregularity is characterized by increased (relative
to the surrounding medium) charged particle concentration
and probably by higher temperature (which fact may be in-
terpreted as an increase in the effective collision frequency
of electrons).

[4] Two types of the Trimpi effect are described in pub-
lications. The first one is a classical Trimpi effect [Helli-
well et al., 1973]. It is assumed to be a result of whistlers
caused by energetic electron precipitations [Rycroft, 1973].
Part of the electromagnetic pulse energy the source of which
was a lightning discharge may propagate with small losses
along the geomagnetic field lines reflecting from the iono-
spheric boundary in the magnetically conjugated points and
interacting to energetic electrons at the geomagnetic equa-
tor. The latter process may lead to the transfer of part of
the energy from electrons to the electromagnetic wave. The
electrons that have lost part of their energy are precipitat-
ing into the lower ionosphere altering its properties [Rycroft,
1973]. The classical Trimpi effect is characterized by some
delay after the formation of a spherical (∼0.6 s) and rather
long relaxation time (up to 100 s) [Rodger, 2003].

[5] The so-called “Early Trimpi” has much shorter delay
(less than 100 µs) between the lightning discharge and reg-
istration of the disturbance [Inan et al., 1988]. Dowden et
al. [1996] and Rodger [2003] supposed that the ionospheric
disturbances related to sprites and elves are manifested in
the form of Early Trimpi. The Trimpi effect caused by
sprites has a typical logarithmic decrease in time [Dowden
and Rodger, 1997].

[6] Cloud–ionosphere discharges [Winckler, 1995] was one
of the initially used terms for red sprites discovered in 1989
[Franz et al., 1990]. Sprites are manifested in the form of
light flashes observed over the thunderstorm clouds. It is
interesting that for a human eye these flashes look red only
in 37.5% of the cases (in other cases they look rose, orange,
or even green) [Lyons, 1996]. These picturesque phenom-
ena [Dowden et al., 1997; Lyons, 1994; Rairden and Mende,
1995; Sentman and Wescott, 1995; Winckler et al., 1996]
immediately attracted common attention. However, their
study appeared to be a rather complicated problem due to
their low optical brightness [Stenbaek-Nilsen et al., 2000] and
short lifetime equal to tens of milliseconds [Lyons, 1996].
Probably that is why their observations are registered only
at night. Theoretically, it is possible to observe sprites by a
naked eye but only in exceptional cases. So to study these
phenomena special optical systems are used [Rairden and
Mende, 1995; Sentman and Wescott, 1995]. By their ap-

pearance sprites may be subdivided to the following types:
“similar to a carrot”, “having the shape of a column or “jele-
fish” [Rodger, 1999]. Their occurrence is usually related to
strong (>50 kA) lightning discharges between a cloud and
the surface of positive polarity (+CG) [Boccippio et al., 1995;
Winckler, 1995]. Sprites are generated at a height of about
50 km, that is, approximately by 30 km above the thunder-
storm cloud. Their upper boundary is located at a height of
about 90 km over the Earth’s surface. The horizontal diam-
eter of sprites (in the case when there are not less than two
“columns”) is 25–50 km [Rodger, 1999]. The frequency of
sprite generation is rather low. Over the entire globe, light-
ning discharges occur 50–100 times per minute, but only a
few are accompanied by sprites. The causes of this are, first,
the fact that the lightning discharges of the positive polarity
occur much more seldom than the discharges of negative po-
larity (10% “+CG” and 90% “−CG”) [Uman, 1987]. Second,
all sprites are related to strong positive discharges, whereas
only in rare cases strong positive discharges are accompa-
nied by these phenomena. Appearance of sprites has been
detected in various climatic conditions both over the land
and seas [Boeck et al., 1995; Vaughan et al., 1992].

[7] There exist various theories of the sprite generation
mechanism. It is assumed that the electromagnetic pulse
accompanying a lightning discharge (EMP), or the quasi-
electrostatic field (QE) may be the cause of their generation
[Pasko et al., 1997; Rowland et al., 1995; Valdivia et al.,
1997].

[8] Besides red sprites, such events as blue jets and elves
are observed over thunderstorm clouds. Blue jets appear
directly over the center of a thunderstorm cloud and are
a narrow upward cone. Being born at the height of the
upper boundary of the cloud (about 20 km), they reach a
height of about 40–50 km over the Earth’s surface spreading
away in their upper part to the dimension of about 5 km
with the cone aperture angle of about 15◦. There exists
a theory assuming that the blue jets initial stage is blue
starters. They also present cones covering the region from
approximately 17 km (the upper boundary of the cloud) to
25 km over the Earth’s surface and in their upper part have a
width of about 2 km. It was detected that they are generated
in the vicinity of negative charges [Wescott et al., 1996].

[9] The phenomena called elves are observed at altitudes of
about 75–105 km after strong lightning discharges. [Fukun-
ishi et al., 1996a, 1996b]. It is assumed that these formations
having the diameter of 100–300 km occur due to the heating
of the electrons in the lower ionosphere by the electromag-
netic pulse of the lightning discharge [Inan et al., 1996].

[10] Many authors paid attention to studies of the Trimpi
effect. A fairly detailed review of these studies was pre-
sented by Soloviev and Hayakawa [2002], who analyzed var-
ious methods of solution of the three-dimensional problems
in the radio wave propagation theory. As far as we know
from the publications, currently nothing cardinally new can
be added to the list presented earlier. This paper presents a
development of the studies begun by Soloviev and Hayakawa
[2002]. Unlike in the latter paper, in this paper the influ-
ence of the geomagnetic field in the problem of diffraction
at a three-dimensional irregularity is considered. This in-
fluence in the considered frequency range is most strongly
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Figure 1. Geometry of the problem.

manifested at night when all sprites described in publica-
tions were optically observed.

[11] In this paper to solve the problem on the field of a
vertical electric dipole in the Earth–ionosphere waveguide
having a local irregularity at the upper wall, an original
method based on the integral equations theory [Soloviev and
Hayakawa, 1997] is applied. The irregularity is chosen in the
form of a finite by height cylinder without any limitations
on the shape and dimensions of its cross section. Though
in publications there are indications to a presence of a fine
structure of the sprites, this model does not take into account
such structure, but models a sprite as a scattering volume.
It is evident that using VLF electromagnetic field with a
wavelength of the order of 15 km (for a frequency of 20 kHz)
one cannot resolve the fine structure of a sprite. The scatter
from the system of close-located “columns” would not differ
from the scatter at the whole cylinder.

2. Formulation of Electrodynamical
Problem of Scattering

[12] The problem of the field of a harmonic (exp(−iωt))
vertical electric dipole in the Earth–ionosphere waveguide
with a three-dimensional local irregularity is considered in
the impedance formulation for the parallel-plain model of
the waveguide channel. The published estimates of the ver-
tical and horizontal dimensions of sprites modeled by our
local irregularity show that the dimensions do not exceed
50–100 km. This means that the electromagnetic field scat-
tered at such irregularity may be considerable (and thus may
be observed and registered) only at short paths of ∼1000–
1500 km for which one can neglect the curvature of the
Earth’s surface. The neglecting by the Earth’s curvature
makes the problem visual not breaking the general charac-

ter of the proposed solution algorithm. A transition to the
spherical model may be done using the formulae obtained
by Soloviev [1990] and Soloviev and Agapov [1997]. In the
considered model of the waveguide, the lower wall described
by a plain surface Sg is assumed to be homogeneous, its
properties being determined by the surface impedance δg.
The waveguide is limited from the top by the surface Si,
its properties being determined (in its regular part) by the
impedance δi. The three-dimensional local irregularity di-
rectly adjoining the upper wall of the waveguide is chosen
in the form of a finite by a height cylinder, the shape of the
cross section of it being arbitrary. The surface of the upper
wall of the cylinder coincides with the surface Si, whereas the
surface of the lower wall Sp is located in the plane parallel to
the surface Si. We will denote the side surface of the cylinder
as Sl. The properties of the waveguide space D ∈ R3 limited
by the waveguide walls and surfaces of the model irregular-
ity coincide with the properties of the vacuum, its dielectric
and magnetic permeability and wave number being ε0, µ0,
and k, respectively.

[13] In the cylindrical coordinate system (r, ϕ, z) with the
z axis going through the source, the surfaces Sg and Si are
described by the equations z = 0 and z = h, respectively.
The source of the field (a vertical electrical dipole with the
dipole moment P0) is located in the point (0, 0, zt). The sur-
face Sp lies in the plane z = zp, and the surface Sl is parallel
to the z axis. The problem geometry is shown in Figure 1.
In a scalar approximation (neglecting field depolarization at
the scatter at the three-dimensional irregularity) the elec-
tromagnetic field excited by such source is described by the
vertical component of the Hertz vector which in the D re-
gion satisfies the inhomogeneous Helmholtz equation and the
following boundary conditions:

1

Π

∂Π

∂n
= ikδ(M)

∣∣∣
M∈Sg,Si,Sl,Sp

(1)
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where n is the external normal to the boundary surfaces of
the waveguide volume, δ(M) = δg for M ∈ Sg, δ(M) = δi

for M ∈ Si, δ(M) = δl for M ∈ Sl, and δ(M) = δp(r, ϕ)
for M ∈ Sp. Conditions at the infinity require attenuation
of Π(r, ϕ, z) at r → ∞. In this case there is no need to
attract additionally a boundary condition at the edge (the
line of crossing of Sp and Si, Sp, and Sl) because the avail-
able conditions guarantee unambiguousness of the solution.
It should be noted that actually in the VLF range, there
are the following estimates of the impedance values for the
TM polarization field generated by the considered source:
|δg,i,p| < 1 and |δl| > 1. If the vertical component of the
Hertz vector is known, the vertical component of the elec-
tric field may be calculated by

Ez(r, ϕ, z) = (k2 +
∂2

∂z2
)Π(r, ϕ, z)

[14] For determination of the values of the parameters
of the inhomogeneous impedance model of the waveguide
channel Earth–ionosphere, we attracted known from publi-
cations [Orlov et al., 2000] vertical profiles of the concentra-
tion Ne(z) and effective collision frequency νe(z) of electrons.
For the given frequency and angle of incidence of the electro-
magnetic wave at an inhomogeneous layer Ψ, the equation
for the impedance matrix

δ̂i =

(
δ(e) δ12

δ21 δ(m)

)
is integrated numerically from a height of ∼100 km down-
ward to ∼40 km, covering with a guaranty the region im-
portant for formation of the reflected from the ionosphere
VLF field [Galiuk et al., 1989; Kirillov, 1979, 1981]. We
take the determination of the impedance in the form Etg =

Z0δ̂i[Htg × n], where Z0 =
√

µ0/ε0, and Etg and Htg are
the tangential to the considered surface components of the
electric and magnetic fields, respectively. The values δ̂i = δ̂d

of the impedance matrix components obtained at the lower
boundary of integration z = zd are recalculated to the height
z = h in the vacuum. The formulae for such recalculation
we obtain using the following matrix of the reflection index
of the plane wave

R̂ =

(
R(e) R12

R21 R(m)

)
on the boundary of the plasma semispace in vacuum on the
vertical coordinate

R̂(zd) = R̂(h) exp(2ik(h− zd) cosΨ)

Substituting the relation of the reflection index and surface
impedance matrix at the plasma semispace–vacuum bound-
ary

R(e)(zd) = −
[(δ(e)(zd)

cosΨ
− 1

)
(δ(m)(zd) cosΨ + 1) −

δ12(zd)δ21(zd)
]
ξR

R12(zd) = −2δ21(zd)ξR

R21(zd) = 2δ12(zd)ξR

R(m)(zd) =
[(

δ(e)(zd)

cosΨ
+ 1

)
(δ(m)(zd) cosΨ− 1)−

δ12(zd)δ21(zd)
]
ξR

where

ξR =

exp(2ikzd cosΨ)(
δ(e)(zd)

cosΨ
+ 1

)
(δ(m)(zd) cosΨ + 1)− δ12(zd)δ21(zd)

into the expressions for the components of the impedance
matrix, we obtain formulae for recalculation of the compo-
nents of the impedance matrix to the height z = h in vacuum

δ(e)(h) = cos Ψ×

[
(exp(4ik cosΨ(h− zd))− 1)a

(m)
1 (zd)a

(e)
2 (zd)+

4δ12(zd)δ21(zd)
]/

ξδ

δ12(h) =
4δ12a12 exp(2ik cosΨ(h− zd))

ξδ

δ21(h) =
4δ21a12 exp(2ik cosΨ(h− zd))

ξδ

δ(m)(h) =
1

cosΨ
×

[
(exp(4ik cosΨ(h− zd))− 1)a

(m)
2 (zd)a

(e)
1 (zd)+

4δ12(zd)δ21(zd)
]/

ξδ

where

ξδ = [exp(2ik cosΨ(h− zd))− 1]2a
(m)
2 (zd)a

(e)
2 (zd)−

4δ12(zd)δ21(zd)

a
(m)
1 = (δ(m)(zd) cosΨ + 1)×
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δ(e)(zd)

cosΨ
+ i tan(k cosΨ(h− zd))

]
− δ12(zd)δ21(zd)

a
(m)
2 = (δ(m)(zd) cosΨ + 1)×[

δ(e)(zd)

cosΨ
− i cot(k cosΨ(h− zd))

]
− δ12(zd)δ21(zd)

a
(e)
1 =

[
δ(m)(zd)

cosΨ
+ 1

]
×

[
δ(e)(zd)

cosΨ
+ i tan(k cosΨ(h− zd))

]
− δ12(zd)δ21(zd)

a
(e)
2 =

[
δ(m)(zd)

cosΨ
+ 1

]
×

[
δ(e)(zd)

cosΨ
− i cot(k cosΨ(h− zd))

]
− δ12(zd)δ21(zd)

a12 =

[
δ(e)(zd)

cosΨ
+ 1

]
(δ(m)(zd) cosΨ + 1)−

δ12(zd)δ21(zd)

[15] The height z = h corresponds to the altitude where
the combination of the impedance matrix δ = δ(e) −
δ12δ21/δ(m) in a minimum way depends on the angle Ψ. For
realization of such algorithm together with the equation for
the matrix δ̂i, the equation for its derivative ∂δ̂i/∂Ψ, is inte-
grated. Also the formulae of recalculation of the derivative
in vacuum were derived and used. The value of the Earth’s
surface impedance δg is determined by the given values of
the relative dielectric permeability and conductivity for the
two-layer model of the underlying surface.

[16] In this paper we are not interested in what degree
the initial TM field at the scatter at the irregularity will be
reexcited into the field of the TE polarization. We will as-
sume this effect to be negligible. So the anisotropy related to
the presence of the geomagnetic field will be approximately
taken into account. It is known that in a general case the
TM and TE components of the electric field are described
by the electric Π(e) and magnetic Π(m) Hertz vectors and
are related. For the field in the vacuum cavity this rela-
tion is expressed by the following boundary conditions at
the ionospheric wall of the waveguide:

∂

∂z

(
Π(e)

Z0Π
(m)

)
=

ik

 δ(e) − δ12δ21

δ(m)

−δ12

δ(m)

δ21

δ(m)

1

δ(m)

×
(

Π(e)

Z0Π
(m)

)
So the impedance we use in the scalar problem is taken in
the form

δi = δ = δ(e) − δ12δ21

δ(m)

3. Principal Equations

[17] Using the second Green formula one can obtain an
expression for function Π(r, ϕ, z) in any point of the D region
via the integral over the irregularity surface Sp ∪ Sl:

Π(R) = Π0(R) +
ikε0

P0

∫
Sp

∫
Π(R′)×

[
δp(r, ϕ)Π0(R,R′)− ∂Π0(R,R′)

ik∂z′

]
dS′+

ε0

P0

∫
Sl

∫
∂Π(R′)

∂n′

[
Π0(R,R′)− 1

ikδl

∂Π0(R,R′)

∂n′

]
dS′

l (2)

where R(r, ϕ, z) /∈ Sp, Sl denotes the observational point,
R′(r′, ϕ′, z′) ∈ Sp, Sl corresponds to the integration point, n′

is the normal directed outside the wave volume, Π0(R) is the
field of the initial source in a regular waveguide with a thick-
ness of h and homogeneous walls with the impedances δg and
δi, and Π0(R,R′) is the Green function. The expression for
the latter may be obtained from the formula for Π0(R) sub-

stituting r by r1 =
√

r2 + r′2 − 2rr′ cos(ϕ− ϕ′) and zt by h
(see Figure 1). In the limiting case R→ Sp, Sl in the right-
hand side of equation (2), there appears an extra term of
the form Π(R)/2, this fact being related to the jump in the
normal derivative of the Green function ∂Π0(R

′,R)/∂n′.
[18] This very choice of the Green function Π0(R,R′) in

the form of a solution for the regular waveguide makes it pos-
sible to limit the region of integration in equation (2) down
to the dimensions of the irregularity surfaces Sp and Sl. The
method of construction of an approximate solution of equa-
tion (2) with the accuracy up to the terms of the order of
O((kr)−1) was described in detail by Soloviev [1998]. The
condition of its applicability is kr � 1 (that is, the obser-
vational point should be located in the wave zone from the
source). There is no additional conditions, for example, on
the dimensions of the irregularity. In this paper we describe
only the main stages of the solution of equation (2).

[19] Two-dimensional equation (2) is solved by asymptotic
transformation into an one-dimensional one. To do that we
reveal the quickly oscillating multiplier and introduce the
attenuation function

Π(R) =
P0

2πε0

exp(ikr)

r
V (R)

Π0(R,R′) =
P0

2πε0

exp(ikr1)

r1
V0(R,R′)

If one introduces the ecliptic coordinates

r′ =
r

2
(cosh u + cos ν)

r1 =
r

2
(cosh u− cos ν)
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dS′ = r1r
′dudν (−∞ < u < +∞, 0 ≤ ν ≤ π)

equation (2) for attenuation function would have the form

V (R) = V0(R) +
ikr

2π
×

∫
Sp

∫ [
δp −

1

V0(R,R′)

∂V0(R,R′)

ik∂z′

]
×

V (R′)V0(R,R′)eikr(cosh u−1)dudv+

r exp(−ikr)

2π

∫
Sl

∫
∂W (R′)

∂n′
×

[
W0(R,R′)− 1

δl

∂W0(R,R′)

ik∂n′

]
dS′

l

[20] When kr � 1, the exponential multiplier in the first
integral becomes quickly changing in the direction transverse
to the propagation circuit on the background of the multi-
plier left under the integral.

f(u, v) = V (R′)V0(RR′)

[
δp −

1

V0(RR′)

∂V0(R,R′)

ik∂z′

]
[21] The latter makes it possible to perform the calculation

of the integral in terms of dv over the cylinder base by the
stationary phase method. As a result the integral in terms of
variable v, which may be considered as a curvature integral
along the irregularity boundary. The contour of integration
is passed clockwise. Thus, with an accuracy up to the terms
of the order of O((kr)−1), we obtain the expression for the
attenuation function

V (R) = V0(R) +
r exp(−ikr)

2π

∫
Sl

∫
∂W (R′)

∂n′
×

[
W0(R,R′)− 1

δl

∂W0(R,R′)

ik∂n′

]
dS′

l+

√
kr/2

2π

∮
γp

exp[ikr(cosh(u)− 1] G[u(v), v]dv (3)

where

G[u(v), v] =
√

πei3π/4f(0, v)w(ei3π/4p)+

1

p

[
f(0, v)− f(u(v), v)

cosh[u(v)/2]

]

Figure 2. Vertical profiles of the concentration Ne(z) and
effective collision frequency νe(z) of electrons.

w(x) = e−x2

1 +
2i√
π

x∫
0

exp(t2)dt



p =
√

2kr sinh[u(v)/2]

[22] To solve equation (3), we use the numerical-analytical
method of semi-inversion [Soloviev and Agapov, 1997], which
combines the direct inversion of the dominant part of the in-
tegral operator of the problem, that is a Volterra operator,
with the iterative process by which the remaining part of
the integral operator is inverted through successive approx-
imations. The influence of the side surface of the cylindrical
irregularity Sl is taken into account by convertional step-
wise procedure. Below, all the results of numerical calcula-
tions are presented for the attenuation function V (R). This
function physically demonstrate the difference of the field
in the waveguide with a three-dimensional irregularity from
the dipole field over an ideally conducting surface.
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Figure 3. Amplitude of the attenuation function V (x, y) for the nighttime period. Curves 1 and 2
correspond to a regular waveguide and a waveguide with local irregularity respectively.

4. Numerical Calculation Results

[23] As a result of the performed calculations, a series
of regularities in the behavior of the amplitude and phase
of the attenuation function V (R) at the presence of a lo-
cal irregularity at the upper wall of the Earth–ionosphere
waveguide is found. It was assumed at calculations that
the source and receiver are located on the Earth’s surface:
z = zt = 0. The emitting frequency of the dipole was cho-
sen to be f = 20 kHz. The height of the regular waveguide
and its impedance were obtained using the vertical profiles
of the concentration Ne(z) and collision frequency νe(z) of
electrons shown in Figure 2. The geomagnetic field was as-
sumed to correspond to the mid-European conditions (in the
vicinity of the point with coordinates 47◦N and 18◦E). The
impedances of the base Sp and side surface Sl of the irreg-
ularity cylinder were chosen equal to δp = 0.5(1 + i)10−2

and δl = 0.5(1− i)102, respectively [Soloviev and Hayakawa,
2002]. The dimensions of the cross section of the cylinder
(described by the formula [(x−xp)/ap]2 +[(y−yp)/bp]2 = 1,
its height zp, and location relative to the propagation path
(shown in Figure 2 by arrows) determined by the coordinates
of the ellipse center xp and yp were varied. Along the path
0 < x ≤ 1500 km the amplitude and phase of the attenu-
ation function were calculated for the cases of various path
orientation relative to the geomagnetic field vector, proper-

ties of the underlying surface, and location and geometric
dimensions of the irregularity (ap, bp, and zp).

[24] Figures 3 and 4 show the amplitudes and phases of the
attenuation function for the nighttime period. The distance
from the source to the receiver in kilometers is shown at the
x axis. The underlying surface is wet soil with a relative
dielectric permeability of εm = 20 and conductivity of σ =
0.01 S m−1. The radio wave propagation direction is chosen
along the south-north line (the azimuth is Az = 0). The
following parameters of the irregularity are chosen: ap =
bp = 20 km and zp = 20 km. In Figure 3 the irregularity
is put directly over the signal propagation path (yp = 0)
in the region of the minimum of the attenuation function
amplitude at the regular path (xp = 800 km). At such
choice of the coordinates, the effects related to the presence
of the irregularity are best pronounced. It is demonstrated
in Figure 4.

[25] No graphs of the amplitude and phase of the atten-
uation function for the daytime are presented in the paper.
Soloviev and Hayakawa [2002] showed that such irregulari-
ties weakly distort the field in the daytime Earth–ionosphere
waveguide. Moreover, the sprites modeled here are observed
mainly at night.

[26] Below we consider the amplitude deviations: the dif-
ference in the attenuation function amplitude values in the
undisturbed and disturbed by a three-dimensional irregular-
ity cases. There exists an influence of the irregularity on the
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Figure 4. Phase of the attenuation function V (x, y) for the nighttime period. Curve 1 corresponds to a
regular waveguide, curves 2 and 3 correspond to a waveguide with local irregularity on the distance from
receiver xp = 800 and 1000 km, respectively.

Figure 5. Perturbation of the amplitude of the attenuation function V (x, y) caused by the presence of
the irregularity. Curve 1 corresponds to the case when the geomagnetic field is not taken into account,
and curve 2 corresponds to the magnetic azimuth of the propagation path Az = 0. Parameters of the
underlying surface are εm = 20 and σ = 0.01 S m−1.
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Figure 6. Perturbation of the amplitude of the attenuation function V (x, y) in cases of various wave
propagation path orientation relative to the geomagnetic field. Curves 1, 2, and 3 correspond to the path
magnetic azimuths Az = 0, Az = 90◦, and Az = −90◦, respectively.

behavior of the attenuation function phase, but it is less im-
portant than the influence on the amplitude behavior. Since
the graphs showing the phase changes are not such visual as
the graphs showing the amplitude changes, the former are
not presented.

[27] Figure 5 shows the curves of amplitude disturbances
corresponding to the cases when the geomagnetic field is
and is not taken into account. The curves differ consider-
ably from each other, so one may conclude that taking into
account of the magnetic field is important. One can see in
Figure 5 and the following figures the presence of not only
forward scattering but backscattering as well.

[28] The perturbations in the attenuation function ampli-
tude illustrating the influence of the irregularity on the field
as a function of the propagation direction relative the mag-
netic azimuth of the path are shown in Figures 6 and 7. The
strongest difference is seen between the field behavior at the
paths with the azimuth Az = 90◦ and Az = −90◦, the for-
mer and the latter azimuths corresponding to the eastward
and westward propagation, respectively. The change of the
wave propagation direction to the opposite one (Az = 45◦

and Az = 225◦) is shown in Figure 7. It is worth noting that
the presence of the irregularity influences these paths in a
different way.

[29] Figures 8, 9, and 10 show the influence of the geomet-

ric dimensions of the irregularity on the attenuation function
amplitude. Figure 8 shows curves corresponding to various
values of the semiaxes of the cylinder base of the irregular-
ity. The large and small semiaxes of ellipse are taken to be
equal (ap = bp) and to have values of 10 km, 20 km, and
40 km. It is worth noting that a change of the radius of
the cylinder base by a factor of 2 leads to a change in the
maximum disturbance in the attenuation function amplitude
approximately by the same factor.

[30] The influence of the cylinder height is shown in
Figure 9. The values of the impedances of the base and
sidewall of the cylinder stayed fixed. The comparison of
the changes caused by the irregularity in the form of a
cylinder with impedance of the base δp = 0.5(1 + i)10−2

and by the irregularity of a “spot” type with impedance
δp = (2.38− i× 0.34)10−2 (obtained by recalculation to the
waveguide height by the method described above) is shown
in Figure 10. Comparing the curves one can conclude that
taking into account of the possibility of a descent (assent) of
the local region of the waveguide upper wall relative to the
level of the regular ionosphere plays an important role in the
study of the irregularity impact on radio wave propagation.

[31] Figure 11 illustrates the fact that the influence of the
irregularity on the field in the waveguide depends also on the
location of the irregularity relative to the radio wave prop-
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Figure 7. Perturbation of the amplitude of the attenuation function V (x, y) at the reversal of the wave
propagation direction (Az = 45◦) to the opposite one (Az = 225◦).

Figure 8. Perturbation of the amplitude of the attenuation function V (x, y) at various dimensions of
the cross section of the irregularity cylinder (ap and bp are the semiaxes of the base ellipse). Vertical
dimension of the irregularity is zp = 20 km.
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Figure 9. Influence of the cylinder height zp on the amplitude perturbation. Curves 1, 2, and 3
correspond to zp = 0 km, zp = 10 km, and zp = 20 km, respectively. The radius of the cylinder base is
ap = bp = 20 km. The cylinder base impedance in all three cases is taken δp = 0.5(1 + i)× 10−2.

Figure 10. Perturbation of the amplitude of the attenuation function V (x, y) in the cases “irregularity
cylinder” (δp = 0.5(1 + i) × 10−2, zp = 20 km) and “irregularity spot” (δp = 2.38 − i0.34) × 10−2,
zp = 0 km).
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Figure 11. Perturbation of the amplitude of the attenuation function V (x, y) at a shift of the irregularity
location in the direction lateral to the propagation path by yp = 0 km, yp = 20 km, and yp = 50 km
(curves 1, 2, and 3 respectively). The coordinate along the path xp = 800 km is the same for all three
cases. Vertical dimension of the irregularity is zp = 20 km.

agation path. Figure 11 shows the curves corresponding to
the distance of the cylinder axis from the path line equal to
yp = 0, yp = 20, and yp = 50 km for ap = bp = 20 km
and xp = 800 km. At relatively short distances between the
irregularity and path (∼50 km), a decrease of the maximum
disturbance in the attenuation function amplitude by a fac-
tor of more than 10 is observed. It should be noted here
that for the considered path, one can estimate the distance
by the lateral dimension of the first Fresnel’s zone, the small
semiaxes of the latter being ∼53 km.

[32] The position of the observer influences considerably
the estimate of the changes caused by the presence of the
irregularity. A shift in the coordinates of the observational
point actually corresponds to a shift in the irregularity loca-
tion along and across the radio wave propagation path. The
same shift in the direction lateral to the path would cause
much stronger changes in the irregularity impact than a shift
along the path. This dependence is shown in Figure 12.

[33] The influence of the underlying surface properties is
shown in Figure 13. The curves are shown corresponding
to the following underlying surfaces: wet soil (εm = 20,
σ = 0.01 S m−1) and seawater (εm = 81, σ = 4 S m−1).
Figure 13 shows the graph calculated at the value of the

propagation path magnetic azimuth Az = 0. It is worth
noting that stronger influence of the irregularity is observed
if a sea is the underlying surface than if waves propagate over
a land. At other orientation of the wave propagation path,
the character of the amplitude perturbations is the same.

5. Conclusions

[34] The performed studies make is possible to conclude
on the degree of the influence of a local irregularity at the
waveguide wall on radio wave propagation. The main goal of
this paper is to give to an experimenter a possibility to esti-
mate the scale of the expected changes in the amplitude and
phase of the attenuation function. The analysis of the pre-
sented graphs shows at what parameters the obtained vari-
ations of the field are significant and can be detected exper-
imentally. The study of the dependence of the irregularity
on the propagation path orientation relative the geomagnetic
field, properties of the underlying surface, location of the ir-
regularity and its geometrical dimensions is performed. The
analysis of the presented figures demonstrates the existence
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Figure 12. Perturbation of the amplitude of the attenuation function V (x, y) at various location of
the irregularity. Coordinates of the irregularity base center are xp = 800 km, yp = 0 km (curve 1);
xp = 800 km, yp = 20 km (curve 2); and xp = 820 km, yp = 20 km (curve 3). The vertical dimension of
the irregularity is zp = 20 km.

Figure 13. Influence of the underlying surface properties on perturbation of the amplitude of the
attenuation function V (x, y). The underlying surface is wet soil (εm = 20, σ = 0.01 S m−1, curve 1) and
seawater (εm = 81, σ = 4 S m−1, curve 2). Magnetic azimuth of the propagation path is Az = 0.
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of the field scattered, not only forward, but the backscatter,
as well, obtained on the basis of the theoretical calculations,
allows us to expect its experimental registration.
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