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[1] Radiation of an oscillating electric dipole which is travelling with a constant velocity in
homogeneous isotropic medium with given dispersion characteristic is studied. The cases
of cold plasma and the medium with the dispersion of a resonant type are considered. It is
shown that in the case of the resonantly dispersive medium, the radiation spectrum consists
(depending on the problem parameters) either of two separated frequency ranges or of one
frequency range. Regularities characterizing the dependence of the radiated power on the
source motion velocity at various values of the resonant and plasma frequencies are derived.
The case when the dipole travels in a moving medium the velocity of which is parallel or
antiparallel to the source motion velocity is also considered. It is noted in particular that at
some parameters of the problem, the energy loss of the source are negative. INDEX TERMS:
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1. Introduction

[2] The problem on radiation of sources moving in homo-
geneous stationary media has been actively studied during
many decades. The main attention was drawn to the analysis
of the radiation of charged particles and their beams and also
sources having this or that multipole moment. The results
obtained in this field are presented in many monographs and
papers [see, e.g., Afanasiev and Kartavenko, 1998; Afanasiev
et al., 1999; Bolotovskiy, 1957; Carusotto et al., 2001; Frank,
1981; Ginzburg, 1987, 2002; Stevens et al., 2001; Zrelov,
1968]. It should be noted, however, that in the major part of
the problems considered earlier the source was assumed to
be static in its own reference system (i.e., it has no “proper”
frequency). In such case (if one can neglect the irregularity
in the source motion) the radiation at the given frequency
exists only in the situation when the source motion velocity
exceeds the phase velocity of the electromagnetic waves of
this frequency (the Vavilov–Cerenkov radiation). In the case
of a moving source oscillating in the “proper” reference sys-
tem, the situation becomes principally different. Naturally,
such source radiates at any velocity of the motion, but the
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radiation characteristics depend on it in a very significant
way. Such problems are of an interest both for develop-
ment of the theory and for experiments in various regions
of physics. In particular, they present an interest for the
analysis of radiation processes in the ionospheric plasma. In
this case the antenna of a spacecraft, for example, may serve
as an oscillator of the dipole type. A radiating moving atom
presents another example of this kind.

[3] Various aspects of the theory of the radiation of os-
cillators moving in some simple media have been considered
in publications [see, e.g., Frank, 1942, 1981; Ginzburg and
Frank, 1947a, 1947b; Tyukhtin, 2004a]. This paper is dedi-
cated to the analysis of the influence of medium characteris-
tics on the radiation power of the oscillator and its spectral
density. So we will restrict ourselves by the consideration
of the case of an oscillating electric dipole uniformly moving
in the direction of its dipole moment. Such formulation of
the problem makes it possible to reveal principal physical
regularities and, at the same time, to avoid too cumbersome
mathematical expressions.

[4] Section 2 of this paper contains general expressions ap-
plicable to motionless medium with an arbitrary frequency
dispersion. The main features of the cold plasma case
are also noted. Section 3 is dedicated to the case of the
medium with the dispersion of a resonant type. The situ-
ation when not only the oscillator is moving but the sur-
rounding medium as well is considered in section 4.
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Figure 1. Spectral density of the radiation in units
p′

2
0ω

′4
0/3c3 for the case of the plasma at (a) Ωp = 0.7 and

(b) Ωp = 0.95. Values of the oscillator motion velocity β are
shown at the curves.

2. Case of Cold Plasma

[5] Let an electric dipole in the “proper” reference sys-
tem is characterized by the dipole moment density P′ =
p′δ3(x′, y′, z′), where p′ = p′0e

′
z exp(−iω0t

′) and ω′0 is the
source oscillation frequency in this reference system (the
values related to the source “proper” reference system are
marked by dashes). We will consider the dipole moving along
the direction of its dipole moment with a velocity of v = vez

(v > 0). In this case, in the “laboratory” reference system,
the source also has only an electric dipole moment equal to
p = p′

√
1− β2, where β = v/c. The surrounding medium

taken to be homogeneous, isotropic, and nonabsorbing has
permittivity (ε) and permeability (µ) which depend on the
wave frequency but are independent of the wave vector.

[6] In this paper we will analyze the radiation power Σ
and its spectral density σ(ω) averaged over a period. The
general expression for Σ [Ginzburg and Frank, 1947b] may

be written in the following form:

Σ =

∫
ω>0

σ(ω)dω σ(ω) = σ̃(ω) + σ̃(−ω) (1)

σ̃(ω) =
p′

2
0(1− β2)

4c2v
µ|ω|3×

[
1−

(
ω − ω0

ωnβ

)2
]

1[(ωnβ)2 − (ω − ω0)
2] (2)

where n2(ω) = ε(ω)µ(ω), ω0 = ω′0
√

1− β2, and 1(ξ) is the
unit function of Heaviside:

1(ξ) =

{
1 if ξ > 0
0 if ξ < 0

One can see that the σ(ω) value presenting the spectral den-
sity of the radiation energy differs from zero within the fre-
quency range determined by the inequality

ω2β2ε(ω)µ(ω) > (ω − ω0)
2 (3)

Further analysis of the energetic characteristics depends on
the choice of the medium model. In publications [see, e.g.,
Frank, 1942; Ginzburg and Frank, 1947b; Tyukhtin, 2004a]
the simplest case of a medium without dispersion is consid-
ered in a most detailed way. Not discussing this problem we
come to the analysis of the energy loss in cold plasma char-
acterized by the permittivity ε = 1−ω2

p/ω2 (where ωp is the
plasma frequency) and permeability µ = 1. In this situa-
tion the solution of inequality (3) determining the frequency
range of the radiated waves takes the form

ω1 < ω < ω2

ω1,2 =
ω′0 ∓ β

√
ω′20 − ω2

p√
1− β2

(4)

Radiation occurs only in the case when the values ω1,2 are
real, i.e., ω′0 > ωp (it is worth emphasizing that the source
frequency in the laboratory frame of reference equal to ω0 =
ω′0

√
1− β2 may be even lower than the plasma frequency).

One can easily see that the width of the radiation spectrum
increases with an increase of the source motion velocity and
decreases with an increase of the plasma frequency.

[7] The spectral power of the radiation has the form

σ(ω) =
p′

2
0

4c3

(1− β2)2

β3

ω′0ω
3(ω − ω1)(ω2 − ω)

ω2 − ω2
p

×

1(ω − ω1)1(ω2 − ω) (5)

Figures 1a and 1b show the dependencies of the spectral
power of the radiation (in the units p′20 ω′40 /3c3) on the di-
mensionless frequency Ω ≡ ω/ω′0 for various value of β and
Ωp ≡ ωp/ω′0. It is worth noting that at not too large values
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of the plasma frequency, the character of spectral distribu-
tions is similar to the one taking place in vacuum. However,
if Ωp ≈ 1 (Figure 1b), the frequency distributions of the
power take an interesting peculiarity: at rather high veloc-
ity, the radiation spectrum is entirely located at Ω > 1, that
is, in the region of the frequencies exceeding the proper fre-
quency of the oscillator ω′0.

[8] The total radiation power of an electric dipole obtained
after substitution of (5) into (1) and calculation of the cor-
responding integral is written in the following form:

Σ =
p′

2
0ω

′4
0

4c3β3

{
2β

√
1− Ω2

p

[
Ω2

p +
β2

3
(2− 5Ω2

p)

]
−

Ω2
p

2
(1− β2)

[
(Ωp +

√
1− β2)2 ln

Ω2 + Ωp

Ω1 + Ωp
+

(Ωp −
√

1− β2)2 ln
Ω2 − Ωp

Ω1 − Ωp

]}
(6)

where Ω1,2 = ω1,2/ω′0. One can show that this expression is
a monotonously decreasing function of both the velocity of
the dipole motion and plasma frequency. At low velocities
the function coincides with the accuracy up to the value of
the order of β2 with the radiation power of a motionless
source:

Σ ≈ p′
2
0ω

′4
0

3c3
(1− Ω2

p)1/2

In the ultrarelativistic regime when 1 − β2 � 1, one can
obtain

Σ ≈ p′
2
0ω

′4
0

3c3
(1− Ω2

p)3/2

[9] Figure 2 shows the dependencies of the radiation power
of an electric dipole on the velocity of its motion at several
values of the plasma frequency. One can see that this depen-
dency is insignificant if the plasma frequency ωp is not too
close to the proper frequency of the source ω′0. It is worth
emphasizing that, in spite of this, the radiation spectrum
undergoes quite significant reconstruction at changes in the
velocity, this fact being mentioned above.

[10] Concluding this section, we make some notes con-
cerning radiation of the moving longitudinal magnetic dipole
in cold plasma (more details on this problem are given by
Tyukhtin [2004a]). One can show that the total power of
radiation of a magnetic oscillator is

Σm =
m′2

0ω
′4
0

3c3
(1− Ω2

p)3/2

where m′
0 is the amplitude value of the magnetic dipole mo-

ment in the reference system of the source. Thus Σm does
not at all depend on the source motion velocity, in spite of
the significant dependence of the spectral composition of the
radiation. At equal dipole moments and proper frequencies,
an electric dipole is more effective emitter than a magnetic
one, because Σm ≤ Σ (the equality of the powers of this two
sources is reached only in the limit β → 1).

Figure 2. Dependence of the radiated power of an elec-
tric dipole in units p′

2
0ω

′4
0/3c3 on the velocity in the case of

plasma. The values of the plasma frequency Ωp are indicated
at each curve.

3. Case of Resonant Medium

[11] Now we consider such case when an electric dipole
is moving in the nonmagnetic and nonabsorbing medium
having the dispersion of a resonant type. We have for the
medium with one resonant frequency:

ε = 1 +
ω2

p

ω2
r − ω2

=
ω2

rε0 − ω2

ω2
r − ω2

, µ = 1 (7)

where ωr and ωp are the resonant and plasma frequencies,
respectively, and ε0 = 1 + ω2

p/ω2
r is the permittivity of the

medium relative to the static field. It is worth noting that for
such medium, a detailed study of the radiation even in the
simplest case of a moving point charge was performed only in
the recent years. In particular, Afanasiev and Kartavenko
[1998] and Afanasiev et al. [1999] analyzed the radiation
of a charge in an infinite resonantly dispersive dielectric,
and Tyukhtin [2004b, 2005] considered the radiation in a
waveguide filled in by a dielectric.

[12] Substituting (7) into (2), we obtain

σ̃(ω) =
p′

2
0(1− β2)

4v3

|ω|f(ω)

ω2
r + ω2

p − ω2
(8)

where

f(ω) = (1− β2)ω4 − 2ω0ω
3+

[ω2
0 − ω2

r(1− β2) + ω2
pβ2]ω2 + 2ω0ω

2
rω − ω2

0ω2
r (9)

Condition (3) determining the range of the emitted frequen-
cies is reduced to the following requirements:

f(ω) > 0 at ω2 ≤ ω2
r
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f(ω) < 0 at ω2 ≥ ω2
r + ω2

p (10)

(in the frequency region ω2
r < ω2 < ω2

r + ω2
p, there can be

no radiation at all, because condition (3) is not fulfilled due
to negative value of ε).

[13] One can obtain relatively simple formulae for the
boundary frequencies and radiation energies at some limi-
tations on the problem parameters. We present below only
the estimates for boundary frequencies. We assume first
that the resonant frequency of the medium is much less than
the oscillator frequency in the laboratory frame of reference:
ωr � ω0 = ω′0

√
1− β2. Then it is easy to show that there

exist two frequency ranges in the radiation spectrum. The
first one is determined by the inequalities ω∗ < ω < ωr,
where ω∗ ≈ ωr(1+β2ω2

pω−2
0 )−1/2. This frequency range may

be called a “resonant” one because it is located in the vicin-
ity of the resonance frequency ωr. The second emitted fre-
quency range is determined by the inequality ω1 < ω < ω2,
where ω1,2 ≈ (ω′0∓β

√
ω′20 − ω2

p)/
√

1− β2. This range may
be called a “proper” one because at relatively small veloci-
ties it includes the oscillator frequency ω′0 (however, it should
be borne in mind that at sufficiently high values of β, the
lower boundary of this range becomes higher than ω′0). We
emphasize that this frequency range in the radiation spec-
trum exists only under condition ω′0 > ωp. It is worth also
noting that the “resonant” and “proper” frequency ranges
at the condition ωr � ω, as a rule, are located rather far
from each other. One can show that the “resonant” radi-
ation is much weaker than the “proper” radiation (if the
latter does exist). We emphasize that in the case ω0 < ωp,
the “proper” radiation disappears, whereas the “resonant”
radiation takes place at any relation between the plasma
frequency and proper frequency of the source.

[14] If ωr � ω0, two principally different possibilities may
be realized. The first one takes place at β

√
ε0 < 1 when

the dipole motion velocity v is less than the phase veloc-
ity of the low-frequency radiation (c/

√
ε0). In this case

there exist both the “proper” range of the emitted frequen-
cies and the “resonant” range adjacent to the frequency ωr.
For the “resonant” radiation under the additional condition
ω0

√
1− β2 � ωr

√
1− β2ε0, we obtain the frequency range

ω∗ < ω < ωr, where ω∗ ≈ ωr

√
(1− β2ε0)/(1− β2). For

the “proper” radiation under the additional condition ω0 �
ωr(1− β

√
ε0), we obtain the frequency range ω1 < ω < ω2,

where ω1,2 ≈ ω0/(1±β
√

ε0). It is worth noting that in these
conditions both the “resonant” and “proper” radiations may
prevail.

[15] In the case when ω0 � ωr but β
√

ε0 > 1, the radiation
spectrum contains only one frequency range ω∗ < ω < ωr,
where ω∗ ≈ ω0/(1 + β

√
ε0). One can show that in this

situation, the total radiation power depends very weakly on
the oscillator frequency.

[16] Figures 3a, 3b, 3c, and 3d show the spectral density of
the radiation energy as a function of the dimensionless fre-
quency Ω = ω/ω′0 at various values of the dimensionless res-
onant (Ωr = ωr/ω′0) and plasma (Ωp = ωp/ω′0) frequencies
and the source motion velocity. Figure 3a shows a typical
picture for the situation when both the resonant and plasma
frequencies are less than the oscillator frequency: ωr < ω′0
and ωp < ω′0. In this case, there are two frequency ranges:

the “proper” radiation is dominating and the “resonant” one
is insignificant. Figure 3b illustrates the case when ωr < ω′0
and ωp > ω′0. In this case there is only one (“resonant”)
range of radiation frequencies.

[17] Figure 3c is typical for the case when ωr > ω′0 and
ωp < ω′0. In this case three possibilities may be realized. If
the dipole motion velocity is less than some value β∗ (β∗ ≈
0.433 for the values of the parameters used in Figure 3c),
there are both the “resonant” and “proper” (relatively low-
frequency) ranges. If β∗ < β < β∗∗ (in our case β∗∗ ≈ 0.82),
there is only one frequency range including the oscillator
frequency and adjacent to the resonant frequency. If the
oscillator velocity is high enough (β > β∗∗), then (besides
this range) there is one more range lying above the resonance
frequency. Figure 3d illustrates the case when ωr > ω′0. and
ωp > ω′0. In this case two possibilities can be realized: either
there are two frequency ranges (if the velocity is low enough),
or there is only one range.

[18] Figures 4a and 4b show the dependence of the total
power of the dipole radiation on the velocity of its motion at
various resonant and plasma frequencies. Figure 4a corre-
sponds to the case when the resonant frequency is lower than
the oscillator frequency (Ωr < 1). If the plasma frequency
is also lower than the oscillator frequency (Ωp < 1), there
are both the “proper” and “resonant” radiations, the for-
mer one prevailing. In this situation, the dependence of the
radiation power on the velocity is insignificant. If Ωp > 1,
only relatively weak “resonant” radiation is generated. It
has fairly well pronounced dependence on the velocity with
a maximum at some of its value. Figure 4b corresponds to
the case when the resonant frequency exceeds the oscilla-
tor frequency. In this case the dependence of the power on
the velocity has a maximum, its value increasing with an
increase of the plasma frequency.

[19] Concluding this section, we emphasize that the com-
parison of the obtained results with the results for the cases
of nondispersive medium and cold plasma shows that the
presence of the resonant dispersion leads to different, much
more complicated, regularities characterizing the radiation
of a moving oscillator.

4. Case of Moving Medium

[20] In this section we consider such situation, when not
only the source is moving but the surrounding medium is
moving as well. The study of the case of a point charge in
these conditions [Bolotovskiy and Stolyarov, 1983] revealed,
in particular, the presence of the effect of the reversal of the
energy loss sign. So it is quite interesting to study radiation
of oscillating sources. This problem was partly considered
by Garibyan and Kostanyan [1971]; however, no analysis of
energetic regularities was performed.

[21] We will consider (as it has been done above) a source
having only the electric dipole moment p′ = p′0e

′
z exp(−iω′0t

′)
in the “proper” reference system (PRS) and moving with a
constant velocity v = vez relative to the “laboratory” refer-
ence system (LRS). Unlike in sections 2 and 3, we will now
assume that the medium moves with a velocity u = uez rel-
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Figure 3. Spectral density of the radiated power (in units p′
2
0ω

′4
0/3c3) for the case of the resonantly

dispersive medium: (a) Ωr = 0.7 and Ωp = 0.5; (b) Ωr = 0.7 and Ωp = 2; (c) Ωr = 2 and Ωp = 0.5;
(d) Ωr = 2 and Ωp = 2. The values of the oscillator motion velocity are indicated at each curve.
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Figure 4. Radiated power (in units p′
2
0ω

′4
0/3c3) for the

case of the resonantly dispersive medium as a function of
the dipole motion velocity β: (a) Ωr = 0.7 and (b) Ωr = 2.
The values of the plasma frequency Ωp are indicated at each
curve.

ative to LRS. For the sake of definiteness, we take u > 0,
whereas the sign of v may be arbitrary. In this section we
consider the case of the medium with the refraction index
n =

√
εµ > 1 which may be considered almost constant

within a wide frequency range.
[22] The procedure of determination of the field in this

problem may be different. On one hand, one is able to solve
directly equations for this or that potential (for example, for
the Hertz vector) in the moving medium using the Fourier
method and taking into account the causality principle or
the Mandelstam radiation condition. On the other hand, one
can use the known spatial–time Green function [Bolotovskiy
and Stolyarov, 1983]. Certainly, all the ways give the same
final result. Below we describe the former way.

[23] From the equations for electromagnetic field in a mov-
ing medium [Bolotovskiy and Stolyarov, 1983], there follows
the following expression for the Fourier image of the Hertz
vector:

Πω = 4π

∞∫
−∞

∞∫
−∞

∞∫
−∞

Pω,k×

µ exp(ikρρ + ikzz)d2kρdkz

k2
ρ + k2

z − ω2c−2 − (n2 − 1)γ2
uc−2(ω − kzu)2

(11)

where γu = (1 − β2
u)−1/2, βu = u/c, ρ = xex + yey, kρ =

kxex + kyey, and Pω,k = ezp(2π)−3δ(ω − ω0 − vkz). It is
reasonably to calculate first the integral of exp(ikρρ) over
the angle between ρ and kρ (it is equal to 2πJ0(kρρ), where
J0(x) is the Bessel function), and then to reduce the integral
along the semiaxis (0 < kρ < ∞) to the integral along the
entire real axis (−∞ < kρ < ∞). The latter integral will

contain the Hankel function H
(1)
0 (kρρ), and the integrating

contour going along the upper shore of its cut. Determining
the rule of the going round the poles of the integrand on the
kρ plane, one should use the Mandelstam radiation principle
requiring the group velocity of the propagating waves vg to
be directed from the z axis [Bolotovskiy and Stolyarov, 1972].
Using the known properties of the group velocity of waves in
a moving medium [Bolotovskiy and Stolyarov, 1976], one can
easily find which of the poles on the kρ plane should be gone
round from below (the condition vgρ > 0 should be fulfilled
for it) and which one should be gone round from above. After
determination of the positions of the poles, the integral over
kρ is found by closing the contour into the upper semiplane.
The integral over kz is taken easily due to the fact that the
Fourier image Pω,k contains a delta function. As a result,
we have

Πω = ez
ip0

2|v|µH
(1)
0 (sρ) exp

(
i
ω − ω0

v
z
)

(12)

The value s squared standing in the argument of the Hankel
function is

s2 = v−2γ2
u(n2 − β2

u)(βv − βv1)(βv − βv2)×

(ω − ω1)(ω − ω2) =

c−2β−2
0 (n2β2

0 − 1)(ω̃ − ω̃1)(ω̃ − ω̃2) (13)

where

ω1,2 = ω′0
√

1− β2
v

βv1,2

βv1,2 − βv

βv1,2 = ∓1∓ nβu

n∓ βu

βv =
v

c

ω̃ = γuω(1− u

v
)

ω̃1,2 =
ω′0

√
1− β2

0

1± nβ0

β0 = (βv − βu)(1− βvβu)−1 (14)
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Here the variable ω̃ has the sense of the frequency in the rest
system of the medium, and β0 represents the dipole motion
velocity in this system.

[24] We see that the s value may be either real, or imag-
inary. In the latter case, its imaginary part is positive
(s = i|s|) and that provides exponential decrease of the gen-
erated “inhomogeneous waves”. In the s2 > 0 case, the
physically correct sign of s is obtained as a result of the
application of the Mandelstam radiation principle as it has
been mentioned above. It is determined by the following
rules:

[25] 1. If βv1 < βv < βv2 (i.e., n2β2
0 < 1), the value s is real

only in the limited region of frequencies ωmin < ω < ωmax,
where ωmin = min{ω1, ω2}, and ωmax = max{ω1, ω2}. In
this case s > 0.

[26] 2. If βv < βv1 or βv > βv2 (i.e., n2β2
0 > 1), the value

of s is real in two semilimited regions: at ω < ωmin and
ω > ωmax. In this case,

sgn s = sgn [(βv − βu)βv]

{
−1 for ω < ωmin

1 for ω > ωmax

It is worth emphasizing that the inequalities βv1 < βv < βv2

are equivalent to the requirement n2β2
0 < 1 which means

that the dipole moves relative the medium with the velocity
lower than the phase speed of light in the medium. Therefore
the given case may be called a regime of “subluminal relative
motion” (SubRM). The inequalities βv < βv1 or βv > βv2

are equivalent to the requirement n2β2
0 > 1 and therefore

this case may be called a regime of “superluminal relative
motion” (SupRM). As in the case of a motionless medium,
in the SubRM regime, the range of the emitted frequencies
(i.e., the region of the real values of s) is finite, whereas in
the SupRM regime it is infinite.

[27] Components of the electromagnetic field in the mov-
ing medium are expressed via the Hertz vector according to
the known formulae [Bolotovskiy and Stolyarov, 1983] (we
would not write them down here). The calculation of the
spent to radiation source power averaged over the period
we perform using the Pointing vector integration over the
surface surrounding the source. If one, as usually, takes as
such a surface an infinite cylinder surface the axis of which
coincides with the source motion trajectory, one obtains the
following expression for the averaged power

Σ = − c

4

∞∫
−∞

EzH∗
ϕdz (15)

One can transform this integral identically to a more simple
form using methods used in the classical theory of radiation
of moving sources in the motionless medium [Frank, 1981].
Omitting all intermediate calculations, we present here the
final result of this procedure:

Σ =

∫
ω>0

σ(ω)dω

σ(ω) = σ̃(ω) + σ̃(−ω) (16)

σ̃(ω) =
p′20 (1− β2

v)

4|v|ε ωs2(ω)sgn(s)1(s2) (17)

The presence of the unit Heaviside function 1(s2) shows that
(as in a motionless medium) the integration is performed
only over the part of the frequency axis where the value s(ω)
is real (which is quite natural because only in this frequency
range there are propagating waves).

[28] It is worth noting that integral (16) is convergent
only in the case of a limited radiation spectrum, that is, at
βv1 < βv < βv2. If the spectrum is unlimited, integral (16)
is divergent in the case of the medium without dispersion.
Here we have an analog of the energetic “paradox” known
in the Vavilov-Cerenkov radiation theory [Bolotovskiy, 1957;
Frank, 1981; Ginzburg, 1987, 2002; Zrelov, 1968]: the source
moving with a superluminal velocity in a motionless nondis-
persive medium should loose infinite energy in a unit of time.
In our case such situation arises in the SupRM motion, i.e.,
at either βv < βv1 or βv > βv2. It is known that this para-
dox may be resolved, for example, at taking into account the
frequency dispersion of the medium which inevitably leads
to limitations of the radiation spectrum.

[29] Calculating integral (15) in the n2β2
0 < 1 case, we

obtain

Σ =
ω′0

4
p′

2
0nµ

3c3

(1− β2
0)3

(1− n2β2
0)3

1 + n2β0βu

1 + β0βu
(18)

In particular cases of motionless medium and motionless
source, expression (18) is reduced to the known results: at
βu = 0 we have [Ginzburg and Frank, 1947b]

Σ =
ω′40 p′

2
0nµ

3c3

(1− β2
v)3

(1− n2β2
v)3

and at βv = 0 we have [Daly et al., 1965; Doil’nitsyna and
Tyukhtin, 2003, 2004]

Σ =
ω′40 p′

2
0nµ

3c3

(1− β2
u)2

(1− n2β2
u)2

The most interesting feature of expression (18) is the fact
that it changes sign at some parameters of the problem.
Under the condition n2β0βu > −1 which is equivalent to
inequality

βv > β∗v ≡
n2β2

u − 1

βu(n2 − 1)

the radiation power is positive, whereas under the condition
n2β0βu < −1 (i.e., at βv < β∗v) it becomes negative. The
latter means that if the source lags considerably behind the
medium stream, it obtains energy from the energy of the
moving medium. It should be noted that in the considered
SubRM regime such effect is possible only for the “super-
luminal” flow of the medium when nβu > 1 (because only
in this case the inequality βv1 < β∗v < βv2 is fulfilled). For
its realization, the velocity of the source motion should be
considerably less than the medium motion velocity, because
β∗v < βu). Certainly, this effect will take place also in the
SupRM regime; however, in this case the radiation power in
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the model of nondispersive medium appears to be infinite (as
it has been already noted, this “paradox” may be resolved
by taking into account the dispersion).

[30] The effect of the sign reversal of the energy wave
losses was noted earlier for the case of a charge moving in the
moving medium [see, e.g., Bolotovskiy and Stolyarov, 1983].
However, in this case the radiation field presents only in the
SupRM regime and, respectively, only in such regime the
effect of the sign reversal of energy wave losses is possible. To
be exact, the effect is realized under the condition βv < βv1,
whereas for the oscillator this effect takes place under the
condition βv < β∗v . Since β∗v > βv1, it is evident that this
phenomenon for an oscillator occurs at smaller difference in
velocities βu − βv than for a charge.

5. Conclusions

[31] In this paper, the radiation power of a moving os-
cillating electric dipole in some media was analyzed. It was
assumed that its dipole moment is oriented along the motion
velocity. The main results of the paper are the following.

[32] In the case when the surrounding medium is cold
plasma, it is shown that the radiation occurs only when the
proper frequency of the oscillator ω′0 exceeds the plasma fre-
quency. The radiation spectra are similar to those in the
case of vacuum if the plasma frequency is not too close to
the proper frequency of the oscillator. If the both frequencies
slightly differ from each other, at a high enough velocity the
radiation spectrum lies completely in the region above ω′0.
The radiation power is a monotonously decreasing function
of the velocity and plasma frequency.

[33] In the case when the medium has the dispersion of a
resonant type, at some parameters of the problem the radi-
ation spectrum consists of two separated frequency ranges,
whereas at other parameters this two ranges are united into
one range. The dependence of the radiation power on the
source motion velocity is different at different relations be-
tween the resonance frequency, plasma frequency, and os-
cillator frequency. The comparison of the obtained results
with the results for the corresponding problems in the case
of nondispersive medium and cold plasma, shows that the
presence of the resonant dispersion leads to different, much
more complicated regularities characterizing the radiation of
a moving oscillator.

[34] The expression for the radiation power is derived for
the case when not only the dipole moves, but the surround-
ing it nondispersive medium moves as well, the motion veloc-
ities of the source and medium being parallel or antiparallel.
It is noted that, in particular, at some parameters of the
problem, the effect of the reversal of the wave losses sign
takes place, that is the radiating power becomes negative.
Unlike in the case of a moving charge, for an oscillator this
effect can take place even in the regime of the “subluminal
relative motion”.
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