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[1] A weakly nonlinear process of propagation of an electromagnetic pulse with a linear
modulation of the carrier frequency in a waveguide structure characterized by different scales
of inhomogeneity in the transverse and longitudinal directions is considered. Waveguide
channels with such properties are formed, in particular, in the ionospheric F layer due to its
stratification under the action of powerful modifying pulses. Thus the method proposed is
applicable to a description of the processes of radio wave propagation in the ionosphere with
local irregularities. The method also may be used for controlling the parameters (duration,
amplitude, etc.) of powerful chirped pulses. Chirps are classified in accordance with the
ratio between pulse duration and modulation depth. It is shown that the pulse evolution is
determined by three timescales, and analytical relations for chirp parameters are established
depending on the transverse and longitudinal inhomogeneity. INDEX TERMS: 6984 Radio Science:

Waves in plasma; 2487 Ionosphere: Wave propagation; 2439 Ionosphere: Ionospheric irregularities; KEYWORDS:

Radiowave propagation; pulse evolution; waveguide.
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1. Introduction

[2] Propagation of pulses with a linear deviation of the
carrier frequency in dispersive media is accompanied by the
effects that make these pulses potentially promising for so-
lution of a number of practical problems. A linear frequency
modulation can prove to be a factor that partially coun-
teracts dispersion. For instance, in the linear propagation
regime a quadratic phase modulation gives rise to focusing
of a pulse in time, that is, up to some distance the pulse
compression occurs and only then its dispersion spreading
begins [Akhmanov et al., 1988; Vinogradova et al., 1990].
Phase modulation via a more complicated law can lead to
splitting of the initial pulse into two separate pulses [Hel-
czynski et al., 2002].

[3] Propagation of powerful probing pulses in the iono-
sphere leads to excitation of nonlinear effects and forma-
tion of waveguide channels [Molotkov, 2003; Molotkov et al.,
1999]. Bisyarin and Molotkov [2002] studied propagation of
a short electromagnetic pulse in a graded-index waveguide
with a weak longitudinal irregularity. The goal of the work
described here was to investigate the process of propagation
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of a weakly nonlinear pulse using an additional assumption
that the carrier frequency depends linearly on time.

[4] The phase of a chirped pulse is expressed as Φ =
ωt+µω2t2, where parameter µ characterizes the modulation
depth. The instantaneous frequency is ω + 2µω2t, and the
total variation in the instantaneous frequency of the pulse
with duration τ is given by

∆ω = 2µω2τ

The spectral width ∆Ω of the pulse with duration τ is the
magnitude of the order of τ−1. Let us compare the modu-
lation depth and spectral width. To this end, we compose
the ratio between the total variation in the instantaneous
frequency and the spectral width of the pulse as

∆ω

∆Ω
∼ 2µω2τ2 ∼ µ

τ2

T 2

where T is the oscillation period, T = 2π/ω. In the problem
considered here it is assumed that the pulse contains a suf-
ficiently large number of carrier periods, and therefore the
ratio between the oscillation period and pulse duration is a
small parameter of the problem. By designating this ratio
as δ, we get

∆ω

∆Ω
∼ µ

δ2
(1)
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Relation (1) allows one to classify chirps according to their
depths. The pulses with ∆ω/∆Ω ∼ δ, i.e., µ ∼ δ3, will be
called chirped pulses. It is these pulses that will be con-
sidered in this paper. It is natural to refer to the pulses
whose range of instantaneous frequency variation is compa-
rable with the spectral width as strongly chirped pulses. In-
vestigation of their propagation is a separate problem which
is beyond the scope of this paper.

2. Simulation of Dynamics of a Chirped
Pulse in a Graded-Index Waveguide

[5] Simulation of the process of propagation of a short
weakly nonlinear pulse in a graded-index waveguide with
a weak longitudinal irregularity was performed similarly to
that done by Bisyarin and Molotkov [2002]. In dimension-
less variables ρ (radial coordinate), s (stretched longitudinal
coordinate) and t (time), the model equation acquires the
form

∂2f

∂ρ2
+

1

ρ

∂f

∂ρ
+ δ4 ∂2f

∂s2
+

1

ρ2

∂2f

∂ϕ2
−

(β2(ρ, s, ϕ) +
1

2
α(ρ, s)〈f2〉)∂2f

∂t2
= 0 (2)

The field amplitude f is assumed to be the magnitude of the
order of δ; in this case the pulse duration is the magnitude
of the order of 1/δ. The high-frequency carrier and envelope
of the pulse evolve with different phases. For this reason,
the envelope phase is given by a separate relation

θ =
Q(s)

δ
− δt

in which the Q(s) function should be defined in the process
of the problem solution. It follows from (1) that the term
describing the quadratic phase modulation is of the order of
δ3. The solution of (2) is finally sought in the form

f = δF (ρ, θ, s, ϕ)×

exp

[
i(

R(s)

δ2
− t− δ3µ(s)t2)

]
+ complex conjugate (3)

Note that in a waveguide with a longitudinal irregularity,
the modulation coefficient µ(s) ∼ 1 depends on the longitu-
dinal coordinate. The complex amplitude F is expanded in
a power series of the small parameter

F (ρ, θ, s, ϕ) = F0(ρ, θ, s)+

δF1(ρ, θ, s) +

∞∑
j=2

δjFj(ρ, θ, s, ϕ) (4)

If the refractive index is independent of angle ϕ, the expan-
sion terms of the zero and first orders do not depend on

this coordinate as well. Nevertheless, if a spatial bending of
the waveguide channel axis is taken into account, the depen-
dence on the azimuthal angle will appear in expansion (4)
beginning from the term of the order of δ2 even in the case
of an azimuthally symmetric distribution of the refractive
index in the waveguide cross section. The complex ampli-
tude of the wave process is concentrated in the vicinity of
the channel axis, and therefore all Fj satisfy the boundary
condition Fj → 0 at ρ →∞.

3. Mode Structure and Pulse Modulation
Function

[6] By substituting (3) and (4) into (2) and setting the
terms of the same order with respect to δ equal to zero, we
get a set of boundary problems for second-order differential
equations which, in combination with the conditions of solv-
ability of these problems, allow one to determine successively
all the elements of the ansatz.

[7] The F0(ρ, θ, s) function is the solution of the
Sturm-Liouville problem

∂2F0

∂ρ2
+

1

ρ

∂F0

∂ρ
+ (β2(ρ, s)− r2(s))F0 = 0 (5)

∂F0

∂ρ

∣∣
ρ=0

= 0 F0

∣∣
ρ→∞

→ 0

Bisyarin and Molotkov [2002] have demonstrated the solv-
ability of this problem for a sufficiently wide and practically
important class of the β(ρ, s) functions. Let r2(s) be the
eigenvalue of the problem (5) and let V (ρ, s) be the eigen-
function corresponding to this eigenvalue and normalized by
the condition

∞∫
0

ρV 2(ρ, s)dρ = 1 (6)

[8] The complex amplitude in the principal order can be
presented as a product

F0(ρ, θ, s) = V (ρ, s)U(θ, s)

where U(θ, s) describes the envelope of the selected mode in
the main approximation. Below we shall refer to it as the
pulse envelope.

[9] The first-order correction in expansion (4) satisfies the
equation

∂2F1

∂ρ2
+

1

ρ

∂F1

∂ρ
+ (β2(ρ, s)− r2(s))F1 =

2i(β2(ρ, s)− r(s)Q′(s))
∂F0

∂θ
−

2Q(s)(2β2(ρ, s)µ(s) + r(s)µ′(s)Q(s))F0
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and the same boundary conditions as function F0. The solu-
tion of this problem has the structure that makes it possible
to express the dependences on phase θ via functions U and
∂U/∂θ

F1(ρ, θ, s) = 2iW1(ρ, s)
∂U

∂θ
− 2Q(s)W2(ρ, s)U(θ, s)

[10] Here the pair of functions W1 and W2 is defined as
solutions of inhomogeneous equations

∂2W1

∂ρ2
+

1

ρ

∂W1

∂ρ
+ (β2(ρ, s)− r2(s))W1 =

(β2(ρ, s)− r(s)Q′(s))V

∂2W2

∂ρ2
+

1

ρ

∂W2

∂ρ
+

(
β2(ρ, s)− r2(s)

)
W2 =

(
2β2(ρ, s)µ(s) + r(s)µ′(s)Q(s)

)
V

that satisfy the boundary conditions in problem (5). If for
the right-hand sides of these equations the relations

∞∫
0

ρ
(
β2(ρ, s)− r(s)Q′(s)

)
V 2(ρ, s)dρ = 0

∞∫
0

ρ
(
2β2(ρ, s)µ(s) + r(s)µ′(s)Q(s)

)
V 2(ρ, s)dρ = 0

are fulfilled, such functions W1 and W2 exist. This allows
one, with due account of the condition of normalization
(6), to express the envelope phase and modulation function
through the eigenvalue and the eigenfunction of the problem
(5)

Q′(s) = r(s) +
1

r(s)

∞∫
0

ρ

(
∂V

∂ρ

)2

dρ (7)

µ(s) =
µ0

Q2(s)
µ0 = const (8)

Equations (7) and (8) establish the relation between the
modulation function and the Q(s) and R(s) functions that
determine phases of the envelope and high-frequency car-
rier of the propagating mode. The modulation function is
therefore related to these functions and cannot be specified
in an arbitrary manner. It varies in accordance with (8)
as the pulse propagates in a longitudinally inhomogeneous
waveguide.

4. Envelope of a Chirped Pulse

[11] The second-order correction to the complex amplitude
F2 satisfies the inhomogeneous equation

∂2F2

∂ρ2
+

1

ρ

∂F2

∂ρ
+

(
β2(ρ, s)− r2(s)

)
F2 =

2i
(
β2(ρ, s)− r(s)Q′(s)

) ∂F1

∂θ
−

2Q(s)
(
2β2(ρ, s)µ(s) + r(s)µ′(s)Q(s)

)
F1+

(
β2(ρ, s)−Q′2(s)

) ∂2F0

∂θ2
+

4iβ2(ρ, s)µ(s)Q(s)
∂F0

∂θ
+

4β2(ρ, s)µ(s)
(
θ − µ(s)Q2(s)

)
F0−

2ir(s)
∂F0

∂s
+ 2iµ′(s)Q2(s)Q′(s)

∂F0

∂θ
−

ir′(s)F0 + µ′(s)Q(s)
(
4θr(s) + µ′(s)Q3(s)

)
F0−

α(ρ, s)|F0|2F0

and the boundary conditions ∂F2/∂ρ|ρ=0 = 0 and F2 → 0 at
ρ →∞. The condition of solvability of this problem implies
the equation for the pulse envelope U(θ, s)

2ir(s)
∂U

∂s
+ g(s)

∂2U

∂θ2
+ ij(s)

∂U

∂θ
+ ir′(s)U+

4θµ(s)r(s)Q′(s)U + d(s)U + h(s)|U |2U = 0 (9)

The coefficients of the equation are given by

g(s) = 4

∞∫
0

ρ
(
β2(ρ, s)− r(s)Q′(s)

)
V (ρ, s)W1(ρ, s)dρ−

∞∫
0

ρ
(
β2(ρ, s)−Q′2(s)

)
V 2(ρ, s)dρ

h(s) =

∞∫
0

ρα(ρ, s)V 4(ρ, s)dρ
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j(s) = 4Q(s)

∞∫
0

ρ
(
β2(ρ, s)−

r(s)Q′(s)
)

V (ρ, s)W2(ρ, s)dρ+

8Q(s)µ(s)

∞∫
0

ρ
(
β2(ρ, s)−

r(s)Q′(s)
)

V (ρ, s)W1(ρ, s)dρ−

4Q(s)µ(s)

∞∫
0

ρ
(
β2(ρ, s)−Q′2(s)

)
V 2(ρ, s)dρ

d(s) = 4µ0µ(s)

∞∫
0

ρ
(
β2(ρ, s)−Q′2(s)

)
V 2(ρ, s)dρ

The dependence of the coefficients of (9) on variable s man-
ifests the influence of the longitudinal irregularity of the
waveguide channel on evolution of the pulse envelope and,
in particular, on its linear frequency modulation.

[12] Solution of (9) in a general case can be performed
by the method described in the books by Molotkov [2003]
and Molotkov et al. [1999]. As a first step, it is necessary
to solve a simplified model problem, which will lead to the
conclusions on a qualitative behavior of the solution. Then
this solution can be used as a structural basis of the ansatz
for the solution of the complete problem.

[13] To simplify the problem (9), we impose additional
restrictions on the longitudinal inhomogeneity of the waveg-
uide. We write the sought function U in the form

U(θ, s) =
u(θ, s)√

r(s)
eiθ

extracting explicitly an exponential multiplier with the en-
velope phase and, similarly to Bisyarin and Molotkov [2002],
the multiplier that characterizes amplitude variations as
functions of the longitudinal coordinate. Let us suppose
that the u(θ, s) function defined in such a way depends on
the variable

x = θ −
s∫

0

2g(s′) + j(s′)

2r(s′)
ds′

alone, which can be achieved if the coefficients of (9) are
related by

d(s)− j(s)− g(s)+

4µ(s)r(s)Q′(s)

s∫
0

2g(s′) + j(s′)

2r(s′)
ds′ = 0

−4µ(s)r(s)Q′(s) = g(s)

g(s)r(s) = h(s)

It is these relations that present additional assumptions on
the longitudinal irregularity of the waveguide. Under these
conditions the u(x) function obeys the second Painlevé equa-
tion

u′′ − xu + u3 = 0 (10)

This equation is well studied from the point of view of ex-
istence of moving critical points in the solutions [see Gol-
ubev, 1950; Kudryashov, 2004, and references therein]; a re-
lation with linear integral equations of definite kinds has
been investigated in detail by Ablowitz et al. [1978, 1980].
Gibbon et al. [1985] has proved that it is possible to con-
struct N -soliton solutions of nonlinear differential equations
in partial derivatives if they possess the Painlevé property.
Reduction of the second Painlevé equation to a linear in-
tegral equation and the proof of the existence of bounded
solutions were given by Ablowitz and Segur [1977].

[14] In our work, the numerical solution of (10) was per-
formed by the Runge-Kutta method. Figure 1 shows the
graph of this solution (curve 1). For the sake of a compari-
son, Figure 1 presents a sech soliton with the same amplitude
(curve 2) and the Airy function (curve 3). The soliton of the
nonlinear Schrödinger equation is the solution of a similar
problem [Bisyarin and Molotkov, 2002] without frequency
modulation. The Airy function is presented for comparison
because linearization of (10) is the Airy equation. The plot-
ted solution has a localized character, that is, it tends to
zero at |x| → 0. Comparison with the sech soliton leads
to the conclusion that a linear frequency modulation of the
high- frequency carrier of the pulse gives rise to formation
of an oscillating tail of the envelope and leads to a greater
steepness of the leading edge of the pulse.

5. Conclusions

[15] Propagation of a weakly nonlinear short pulse with
a linear frequency modulation in a graded-index waveguide
with a weak longitudinal irregularity has been investigated
on the basis of a nonlinear wave equation. Depending on
the ratio between the spectral width of the pulse and the
frequency modulation depth, the pulses were classified as
chirped and strongly chirped. The work was devoted to the
detailed investigation of propagation of chirped pulses, that
is, the pulses whose modulation depth is much less than the
spectral width.
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Figure 1. Solution of (10) (curve 1) in comparison with
the soliton of the nonlinear Schrödinger equation (curve 2)
and Airy function Ai(x) (curve 3).

[16] The model nonlinear wave equation was solved by
using an asymptotic procedure, whose small parameter was
the order of magnitude of the pulse amplitude. The longitu-
dinal irregularity of the waveguide had the scale of the order
of a square of the small parameter, and the magnitude of
the phase modulation of the chirped pulse was proportional
to the third power of this parameter. The use of ansatz (3)
and (4) for the solution of the nonlinear wave equation allows
one to detach in a natural manner the linear Sturm-Liouville
problem (5), whose eigenvalue defines the propagation con-
stant of the high-frequency carrier as a function of the longi-
tudinal coordinate, and its eigenfunction describes evolution
of the transverse distribution of the pulse field as it propa-
gates in the graded-index waveguide.

[17] Propagation of a pulse is a nonlinear process charac-
terized by three velocities. A fast process, i.e., propagation
of a high-frequency carrier, is modulated by the envelope
whose evolution has two scales and is formed by the evo-
lution of the envelope phase with a medium velocity and a
slow amplitude variation. The pulse envelope is described
by (9) which in a special case can be reduced to the equa-
tion of the Painlevé class (10). Numerical solution of (10)
has shown that a chirped pulse has a steeper leading edge
as compared with a soliton pulse in the absence of frequency
modulation, and an oscillating, but decaying, tail of the en-
velope is formed at the trailing edge.

[18] In the process of a successive realization of the asymp-
totic procedure, an important relationship (7) and (8) be-

tween the phase of the high-frequency carrier, envelope phase,
and modulation coefficient of the pulse has been established.
The physical consequence of this relationship is that the
chirp cannot be specified in an arbitrary manner in a graded-
index waveguide channel; it must be tailored to the param-
eters of the transverse and longitudinal irregularities of the
waveguide. The result obtained in our work explains this
fact and provides a suitable tool for exploitation of chirped
pulses.
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