References

Araujo-Pradere, E. A., T. J. Fuller-Rowell, and M. V. Codrescu (2002), STORM: An empirical storm-time ionospheric correction model: 1. Model description, Radio Sci., 37, (5), 1070, doi:10.1029/2001RS002467.

Cander, Lj. R., and S. J. Mihajlovic (1998), Forecasting ionospheric structure during the great geomagnetic storms, J. Geophys. Res., 103, 391.

Cander, Lj. R., M. M. Milosavljevic, S. S. Stankovic, and S. Tomasevic (1998), Ionospheric forecasting technique by artificial neural network, Electron. Lett., 34, 1573.

Chan, A. H. Y., and P. S. Cannon (2002), Nonlinear forecast of foF2 : Variation of model prediction accuracy over time, Ann. Geophys., 20, 1031.

Duncan, R. A. (1969), F -region seasonal and magnetic storm behaviour, J. Atmos. Terr. Phys., 31, 59.

Field, P. R., H. Rishbeth, R. J. Moffett, D. W. Idenden, T. J. Fuller-Rowell, G. H. Millward, and A. D. Aylward (1998), Modelling composition changes in F -layer storms, J. Atmos. Sol. Terr. Phys., 60, 523.

Forbes, J. M., R. Gonzalez, F. A. Marcos, D. Revelle, and H. Parish (1996), Magnetic storm response of lower thermospheric density, J. Geophys. Res., 101, 2313.

Forbes, J. M., S. E. Palo, and X. Zhang (2000), Variability of the ionosphere, J. Atmos. Sol. Terr. Phys., 62, 685.

Francis, N. M., P. S. Cannon, A. G. Brown, and D. S. Broomhead (2000), Nonlinear prediction of the ionospheric parameter foF2 on hourly, daily, and monthly timescales, J. Geophys. Res., 105, 12,839.

Francis, N. M., A. G. Brown, P. S. Cannon, and D. S. Broomhead (2001), Prediction of the hourly ionospheric parameter foF2 using a novel nonlinear interpolation technique to cope with missing data points, J. Geophys. Res., 106, 30,077.

Fuller-Rowell, T. J., M. V. Codrescu, R. J. Moffett, and S. Quegan (1994), Response of the thermosphere and ionosphere to geomagnetic storm, J. Geophys. Res., 99, 3893.

Hedin, A. E. (1987), MSIS 86 thermospheric model, J. Geophys. Res., 92, 4649.

Kutiev, I., and P. Muhtarov (2001), Modeling of midlatitude F  region response to geomagnetic activity, J. Geophys. Res., 106, 15,501.

Kutiev, I., P. Muhtarov, L. R. Cander, and M. F. Levy (1999), Short-term prediction of ionospheric parameters based on autocorrelation analysis, Ann. Geophys., 42, 121.

Marin, D., G. Miro, and A. V. Mikhailov (2000), A method for foF2 short-term prediction, Phys. Chem. Earth C, 25, 327.

Mayr, H. G., and H. Volland (1972), Magnetic storm dynamics of the thermosphere, J. Atmos. Terr. Phys., 36, 2025.

Mednikova, N. B. (1957), Mid-latitude ionospheric disturbances, in: Physics of Solar Corpuscular Fluxes and Their Impact on the Upper Atmosphere of the Earth (in Russian), p. 183, Acad. Press of USSR, Moscow.

Mikhailov, A. V. (1990), A method for short-term prediction of foF2 using observational data, Geomagn. Aeron. (in Russian), 30, 808.

Mikhailov, A. V., and K. Schlegel (2001), Equinoctial transitions in the ionosphere and thermosphere, Ann. Geophys., 19, 783.

Mikhailov, A. V., A. Kh. Depueva, and T. Yu. Leschinskaya (2004), Observations of neutral winds and electric fields using backscatter from field-aligned irregularities, Int. J. Geomagn. Aeron., 5, GI1006, doi:10.1029/2003GI000058.

Muhtarov, P., and I. Kutiev (1999), Autocorrelation method for temporal interpolation and short-term prediction of ionospheric data, Radio Sci., 34, 459.

Muhtarov, P., L. Cander, M. Levy, and I. Kutiev (1998), Application of the geomagnetically correlated statistical model to short-term forecast of foF2 , 2nd COST 251 Workshop, European Cooperation in the field of Science and Technological Research (COST), Side, Turkey, 30-31 March 1998.

Pant, T. K., and R. Sridharan (2001), Seasonal dependence of the response of the low latitude thermosphere for external forcing, J. Atmos. Sol. Terr. Phys., 63, 987.

Prölss, G. W. (1980), Magnetic storm associated perturbations of the upper atmosphere: recent results obtained by satellite-borne gas analyzers, Rev. Geophys., 18, 183.

Prölss, G. W. (1995), Ionospheric F -region storms, in: Handbook of Atmospheric Electrodynamics, vol. 2, edited by H. Volland, p. 195, CRC Press, Boca Raton, Fla.

Prölss, G. W., and U. von Zahn (1977), Seasonal variations in the latitudinal structure of atmospheric disturbances, J. Geophys. Res., 82, 5629.

Prölss, G. W., and U. von Zahn (1978), On the local time variation of atmospheric-ionospheric disturbances, Space Res., 18, 159.

Roosen, J. (1966), The seasonal variation of geomagnetic disturbance amplitudes, Bull. Astron. Inst. Neth., 18, 295.

Shepherd, G. G., J. Stegman, Espy P., C. McLandress, G. Thuillier, and R. H. Wiens (1999), Springtime transition in lower thermospheric atomic oxygen, J. Geophys. Res., 104, 213.

Shiokawa, K., and Y. Kiyama (2000), A search for the springtime transition of lower thermospheric atomic oxygen using long-term midlatitude airglow data, J. Atmos. Sol. Terr. Phys, 62, 1215.

Skoblin, M. G., and M. Förster (1993), An alternative explanation of ionization depletions in the winter night-time storm perturbed F2 -layer, Ann. Geophys., 11, 1026.

Wintoft, P., and L. R. Cander (2000), Twenty-four hour predictions of foF2 using time delay neural networks, Radio Sci., 35, 395.

Wrenn, G. L. (1987), Time-weighted accumulations ap(t ) and Kpt ), J. Geophys. Res., 92, 10,125.

Wrenn, G. L., A. S. Rodger, and H. Rishbeth (1987), Geomagnetic storms in the Antarctic F -region. I. Diurnal and seasonal patterns for main phase effects, J. Atmos. Terr. Phys., 49, 901.

Wu, J., and P. J. Wilkinson (1995), Time-weighted magnetic indices as predictors of ionospheric behaviour, J. Atmos. Terr. Phys., 57, 1763.

Zevakina, R. A., and M. V. Kiseleva (1978), F2 -region parameter variations during positive disturbances related to phenomena in the magnetosphere and interplanetary medium, in: The Diagnostics and Modelling of the Ionospheric Disturbances (in Russian), p. 151, Nauka, Moscow.

Zevakina, R. A., E. M. Zhulina, G. N. Nosova, and N. P. Sergeenko (1990), Short-Term Prediction Manual, Materials (in Russian), 71 pp., World Data Cent. B, Moscow.

Zuzic, M., L. Scherliess, and G. W. Prölss (1997), Latitudinal structure of thermospheric composition perturbations, J. Atmos. Sol. Terr. Phys., 59, 711.


AGU