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 Abstract

A simple kinematic approach to the description of interaction between solitons is developed. It is applicable to both integrable and non-integrable two-dimensional models, including those commonly used for studying surface and internal oceanic waves. This approach allows obtaining some important characteristics of the interaction between solitary waves propagating at an angle to each other. The developed theory is validated by comparison with the exact solutions of the Kadomtsev-Petviashvili equation and then applied to the observed interaction of solitary internal waves in a two-layer fluid within the two-dimensional Benjamin-Ono model. 

 1. Introduction
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	Figure 1

  As it is well-known, solitary waves are a rather ubiquitous phenomenon in the oceans [Apel et al., 2007]. One of the interesting specific features of these phenomena is the oblique interaction between the solitons that were observed for the surface waves in laboratory conditions back in 1960s (see, e.g., [Wiegel, 1964] and references therein). The in situ observations were made in particular by Ablowitz and Baldwin [2012]. Three examples of solitary wave interactions observed on a surface of shallow water are shown in Figure 1. 
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	Figure 2

  Similar structures were observed for internal waves. The first was, apparently, the laboratory experiment by Maxworthy [1980]. In the ocean, the interacting internal soliton fronts were observed by many researchers, in particular, by Small [2002] and Wang and Pawlowicz [2012]. Figure 2 shows an example from the latter work; the data from this paper will be used below for the estimation of the wave pattern motion using our theoretical findings.

Regarding the theory of the phenomenon, one can refer to the works by Miles [1977a, 1977b] who considered the oblique interaction of two solitary waves of the KdV-Boussinesq type using an approximate method similar to that suggested by Whitham [1967] for the one-dimensional soliton interaction. He suggested a classification of interactions as weak and strong depending on the relationship between the parameter of nonlinearity  N and the angle  γ between the soliton fronts, where  N is proportional to the soliton amplitude. According to this classification, the interaction is weak if  N≪sin2⁡(γ/2) and strong otherwise. Miles also considered the "resonant" interaction of solitons when the wave pattern consists of three solitary waves stationarily moving in a certain direction.

Here we develop a kinematic approach to the stationary moving a two-soliton pattern in a general case and demonstrate the validity of this approach by comparison with the exact two-soliton solutions, resonant and non-resonant. From the available two-dimensional model equations describing, in particular, surface and internal solitary waves (such as 2D versions of the Boussinesq, Gardner, and Benjamin-Ono equations), only the Kadomtsev-Petviashvili (KP) equation is completely integrable [see, e.g., Ablowitz and Segur, 1981; Anker and Freeman, 1978; Newell and Redekopp, 1977; Satsuma, 1976; Zakharov, 1980]. This allows one to construct exact two-soliton solutions describing the interaction of two solitary waves moving at an angle to each other. Here we use the corresponding exact solutions of the KP equation for two-soliton structures moving as a whole. Besides verifying the simple kinematic approach, we use the latter to define the direction and speed of motion of the whole wave pattern that was not disclosed in exact solutions thus far. Within the suggested approach, one only needs to know the speeds of solitary waves and directions of their propagations in the chosen coordinate frame. These parameters are usually measurable or observable in experiments (see, for example, Figure 1 and Figure 2) and known a priori within many realistic model equations (even non-integrable). Note that even if the total interaction pattern moves stationary, each soliton propagates in the direction perpendicular to its front, so that the total pattern includes "sliding" of soliton fronts with respect to each other.

 2. Kinematics of Plane Soliton Fronts
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	Figure 3

  Some important properties of the oblique interaction of solitons can be understood using a simplified physical consideration of interacting solitons regardless of a specific model. In this Section we choose the coordinates in which the total pattern of the interacting solitons moves without distortion along the  x′-axis with the constant speed  U, so that it is immovable in the coordinates  ξ=x′−Ut and  y′. Figure 3 schematically shows this configuration for two cases. In Figure 3a one can see the general case when two soliton fronts experience finite shifts in space due to the nonlinear interaction (more details will be given in the next Section using exact solution of the KP equation); the shifts are characterized by a bridge between the left and right pairs of soliton fronts. In Figure 3b the special, resonant case is shown when the phase shifts become infinite and the bridge transforms into the third soliton.

The equation that secures the stationary motion along the  x′ axis, i.e., the same velocity  U~ of the entire wave pattern is:

  

	
  U~=V~1cos⁡γ1=V~2cos⁡γ2,
	(1)	


 where  V1,2 are the moduli of solitary wave velocities which are normal to their fronts in isotropic media and defined by a solution for a single soliton in the absence of the second one (which is evident for the front parts far from the interaction area); we assume that they are known. The angles  γ1,2 are measured from the  y′-axis normal to the direction of motion of the whole pattern (see Figure 3). It should be emphasized that this simple approach is valid in an arbitrary inertial reference frame provided that the velocities of solitary waves are taken in that reference frame. This reasoning is quite general and applicable to any model possessing solitary wave solutions and having a solution in the form of a steadily moving set of solitons. As mentioned, the individual solitons propagate perpendicular to their fronts, and the unchanged total pattern is preserved by synchronization of their propagation (the same is true for the linear wave fronts reflecting from a rigid boundary).

In the exact solutions of the KP equation described below in a different coordinate frame  x,y, the direction of the pattern motion and its speed  U are not determined explicitly. However, the amplitudes of solitons, their velocities  V1,2, and the angle between their fronts,  γ=γ1+γ2, are independent of the orientation of a coordinate system. To relate these values with  U and the direction of pattern motion along the  x′-axis, we rewrite Eq. (1) in a slightly different form, for example, for the angle  γ1 as:

 cos⁡(γ−γ1)cos⁡γ1=V~2V~1,
  or γ1=tan−1⁡(V~2/V~1−|cos⁡γ|sin⁡γ),
  

	
   and γ2=γ−γ1.
	(2)	


For small angles  γ1,2 (as in the KP equation considered below) and small nonlinearity when  V~1,2=c(1+s1,2), where  c is the speed of long linear waves and  s1,2≪1 this relationship reduces to  γ1≈(2|Δs|+γ2)/2γ or  |Δs|≈γ1|Δγ|, where  Δs=s2−s1 and  Δγ=γ2−γ1. Because we assumed that  V~1,2 and  γ are known, the expression (2) determines the direction of the pattern motion, and its speed  U~ is now given by Eq. (1). We shall illustrate below the details by a few examples.

In the context of the KP equation in application to a real physical system when the nonlinearity is assumed to be small, the total velocities of solitons  V~1,2 are close to each other and all angles in Eq. (2) are small. The important role in the soliton interactions is played by the front shifts which are characterized by a bridge between two pairs of incoming and outcoming fronts shown in Figure 3a. As mentioned, at some relationship between the solitary wave parameters, the bridge becomes infinitely long and reduces to the third solitary wave; in this case, the wave pattern represents a resonant triad shown in Figure 3b. For the triad pattern (or if a bridge of a finite length is sufficiently long to be close to a soliton), the kinematic relation (1) should be met for any pair of solitons:

  

	
  U~=V~1cos⁡γ1=V~2cos⁡γ2=V~3cos⁡γ3.
	(3)	


The relations (2) and (3) allow us to determine both the direction and speed of the pattern motion in any reference frame.

 3. Exact Analytical Solution for Two-Soliton Interaction in the KP2 Model

The simplified approach developed above can be demonstrated in application to the Kadomtsev-Petviashvili equation with the "normal dispersion" dubbed the KP2 equation. The equation was derived for weakly nonlinear wave beams when the wave fronts can slightly deviate from the direction of propagation coinciding with the  x-axis [Kadomtsev and Petviashvili, 1970]. Here we briefly discuss some analytical solutions of the KP2 equation [Ablowitz and Segur, 1981; Anker and Freeman, 1978; Newell and Redekopp, 1977; Satsuma, 1976; Zakharov, 1980] and compare them with the results presented in Section 2.

Consider the KP2 equation in the coordinate frame moving along the  x-axis with the speed of long linear waves  c:

  

	
  ∂∂x(∂η∂t+αη∂η∂x+β∂3η∂x3)=−c2∂2η∂y2.
	(4)	


This equation is completely integrable by the inverse scattering method; its solitary solutions can be presented in the most convenient form through the Hirota transform (see e.g., [Ablowitz and Baldwin, 2012; Ablowitz and Segur, 1981; Anker and Freeman, 1978; Newell and Redekopp, 1977; Satsuma, 1976]). With the help of the ansatz

  

	
  η(x,y,t)=12βαd2dx2ln⁡F(x,y,t),
	(5)	


 Eq. (4) can be presented in the bilinear form:

 F(Ft+βFxxx+c2Fyy)=FtFx+c2(Fy)2+
  

	
  β[4FxFxxx−3(Fxx)2].
	(6)	


The one-soliton solution to this equation is:

  

	
  F(x,y,t)=1+eωt−kx−ly,
	(7)	


 where  k and  l are arbitrary parameters and

  

	
  ω(k,l)=βk3+c2l2k.
	(8)	


 In the original variables this solution represents a soliton:

  

	
  η(x,y,t)=Assec⁡h2ωt−kx−ly2.
	(9)	


 The soliton amplitude is determined solely by the parameter  k:  As=3βk2/α, whereas its speed depends both of  k and  l:

 Vs=ω(k,l)k2+l2=
  

	
  αAs3(1+32cαAstan2⁡φ)cos⁡φ,
	(10)	


 where  φ=tan−1⁡(l/k) is the angle between the direction of soliton propagation normal to its front and the  x-axis. Note that in the Korteweg-de Vries (KdV) equation which is the particular case of the KP2 equation when  φ=0, the relationship between the soliton speed and amplitude is  Vs=αAs/3.

The soliton propagates at an angle to the horizontal axis  x and the components of the soliton velocity  Vs=(Vx,Vy) are:

 Vx=Vscos⁡φ=ω(k,l)kk2+l2,
  

	
  Vy=Vssin⁡φ=ω(k,l)lk2+l2.
	(11)	


The two-soliton solution has the form:

 F(x,y,t)=1+eω1t−k1x−l1y+eω2t−k2x−l2y+
  

	
  e(ω1+ω2)t−(k1+k2)x−(l1+l2)y+Φ,
	(12)	


 where  ωi(ki,li)=βki3+c2li2ki  (i=1,2),  F=ln⁡B,

 B=6βk12k22(k1−k2)2−c(k1l2−k2l1)26βk12k22(k1+k2)2−c(k1l2−k2l1)2=
  

	
  2α(A1−A2)2−c(tan⁡φ2−tan⁡φ1)22α(A1+A2)2−c(tan⁡φ2−tan⁡φ1)2,
	(13)	


 and  tan⁡φ1,2=l1,2/k1,2,  φ1,2 are the angles between the directions of soliton propagation and  x-axis.

In general, (12) describes the interaction of two plane solitons, experiencing the front shifts in space after the interaction; the typical configuration is similar to what is shown in Figure 1a or in Figure 3a. 

	[image: Fig 4]
	Figure 4

  The two-soliton solution (12) is non-singular if  B≥0, and the spatial shift of each soliton front due to interaction (see Figure 3 and Figure 4) is determined by the parameter  Φ. Two examples of a two-soliton solution as per Eqs. (12) and (5) are shown in Figure 4 for  η(x,y,0). At  t≠0 the total pattern moves as a whole in some direction  x′ to be determined.

The length of the bridge between the soliton fronts depends on the parameter  B which determines the phase shift  Φ in the solution (12). When the soliton parameters  k1,k2,l1, and  l2 are such that  B is close to one (for example, if  k1≫k2 or vice versa), the front shifts are very small. However, as one can see from Eq. (13)  B cannot be equal to one exactly, and therefore, within the KP2 model, the front shift never equals to zero.

	[image: Fig 5]
	Figure 5

  When the soliton parameters are such that  B→0, the front shift goes to minus infinity, and the bridge between the soliton fronts becomes infinitely long (see Figure 5a. In the limiting case, the bridge represents a new soliton with the amplitude  A3=3β(k1−k2)2/α which is less than  A1 and  A2, and the total solution represents a triad of resonantly interacting solitons (see [Ablowitz and Baldwin, 2012; Ablowitz and Segur, 1981; Anker and Freeman, 1978; Miles, 1977b; Newell and Redekopp, 1977; Satsuma, 1976]). In another limiting case when  B→∞ and correspondingly  Φ=ln⁡B→∞, the two-soliton solution degenerates again into the triad but of a different configuration (see Figure 5b. The amplitude of the third, resonant soliton is higher than the amplitudes of two other solitons  A3=3β(k1+k2)2/α. 

 4. Comparison of the Kinematic Approach and Exact Solutions

As has been mentioned in Section 2, the soliton parameters were taken in the reference frame moving along the  x′-axis with an arbitrary speed, whereas in the KP2 equation (4), the coordinate  x is actually  ξ=x−ct, and the equation {per se} is valid if soliton speeds are small,  V1,2≪c. Here in contrast to Section 2,  V1,2 is the nonlinear correction to the wave speed and it is presumed that in the physical coordinate frame the total speed of each soliton is  V~1,2=c(1+s1,2), where  s1,2=V1,2/c.

To support the stationary configuration moving as a whole, the relationship (1) between the angles  γ1,2 and soliton speeds should be met, and from Eq. (10) we have:

 cos⁡γ1cos⁡γ2=V~1V~2=
  

	
  A1A21+9βcl2/2α2A121+9βcl2/2α2A221+3βl2/αA21+3βl2/αA1.
	(14)	


To compare Eq. (14) with the exact solution, it should be remembered that, as mentioned, in Figure 4 the direction of motion of the whole patterns is not known {a priori} and should be found, whereas in Section 2 it was assumed that the pattern moves along the  x′-axis. On the other hand, the angles between the soliton fronts are invariant to the direction of the drift. This direction is defined by Eq. (2) in which (14) should now be used.

Consider first the configuration shown in Figure 4a. For the parameters shown in the caption to Figure 4a, from Eq. (10) we find  V1=1.004;  V2=1.213, so that  V2/V1=1.208. The solitons propagate at the following angles to the  x-axis:  φ1=arctan⁡(l1/k1)=−5.2° and  φ2=arctan⁡(l2/k2)=4.7°. The same angles soliton fronts constitute with the  y-axis (see Figure 3), therefore, the angle between the soliton fronts is  y=|φ1|+φ2=γ1+γ2=9.9°. Combining this relationship with Eq. (2), we find  γ1=52.3°,  γ2=−42.4°.

	[image: Fig 6]
	Figure 6

  The direction of the pattern drift is determined by the angle  δ=φ1+γ1=φ2−γ2=47.1°, and the speed of drift is  U=V1/cos⁡γ1=1.643. This direction is shown by a black line with the arrow in Figure 6a together with the exact two-soliton solutions, at the two moments of time,  t=−75 and  t=75. As one can see, the kinematic description completely agrees with the exact solution and, moreover, predicts correctly the pattern velocity in the  x,y-plane. 

Note that in the coordinate frame co-propagating with the pattern velocity  U (along the black line in Figure 6), the pattern is stationary, and the two-soliton solution in this frame is a function of only spatial variables. This can be confirmed by the change of variables in the exact solution (5), (12):  x=ξcos⁡δ−ηsin⁡δ and  y=ξsin⁡δ+ηcos⁡δ. Rotating the coordinate frame by the angle  δ determined above, we obtain the stationary moving two-soliton pattern in coordinate  ξ,η. 

The same calculations can be carried out for the pattern shown in Figure 4b. Using the parameters shown in the figure caption, we find again from Eq. (10)  V1=0.045;  V2=0.041, so that  V2/V1=0.912. The solitons propagate at the angles to the  x-axis:  φ1=arctan⁡(l1/k1)=−10.8° and  φ2=arctan⁡(l2/k2)=9.8°. The angle between the soliton fronts is  γ=|φ1|+φ2=γ1+γ2=20.6°. Combining this relationship with Eq. (2), we find  γ1=−3.9°,  γ2=24.5°.

The direction of the pattern drift is determined by the angle  δ=φ1+γ1=φ2−γ2=−14.71°, and the speed of the drift is  U=V1/cos⁡γ1=0.046. This direction is shown by the black line in Figure 6b) together with the exact two soliton solutions (12) and (5) at two time moments,  t=−1.5×104 and  t=1.5×104. This figure illustrates again a good agreement between the kinematic description and exact solution of KP2 equation.

For the triad configurations shown in Figure 5, the parameters are very close to those specified in the caption to Figure 4, therefore the directions and speeds of the pattern motion are also very close to those presented above and shown in Figure 6. 

 4.1. On the Observed Multisoliton Structures on a Shallow Water

As mentioned above, the two-dimensional configurations of interacting surface-wave solitons were observed both in the laboratory and over a flat bottom in shallow beach sea areas. In particular, in Ref. [Ablowitz and Baldwin, 2012] from which the photos shown in Figure 1 were taken, the authors, using the dimensionless KP2 equation, have demonstrated that its exact solutions can qualitatively represent a very similar structures as frequently observed wave patterns. The KP2 equation in that paper is equivalent to our Eq. (4) with  α=6,  β=1,  c=6, and the dimensionless parameters  ki and  Pi≡li/ki were used to mimic the patterns presented in the photos taken in the different areas of Eastern Pacific with the water depth between  h=5 cm and 20 cm. We applied the developed concept to the several cases presented in [Ablowitz and Baldwin, 2012] using the expression for the soliton amplitude,  As=3βk2/α (see the formula after (9)). Then, the speeds of the interacting solitons, and finally, the speed and direction of the drift of the whole pattern with respect to the  x-axis were found. After that, we have estimated the real solitary wave parameters using the scaling to the dimensional physical variables for the average water depth  h=15 cm. As the result, we have obtained that in the different cases shown in [Ablowitz and Baldwin, 2012], the amplitudes of solitons range from 7.5 cm to 30 cm, and their velocities, from 1.72 m/s to 2.94 m/s, whereas the linear long-wave velocity is  c0=1.21 m/s. These values are beyond the limits of validity of the KP2 equation which is applicable to the weakly nonlinear wave perturbations (note that one of the solitary waves shown in Figure 1 is, apparently, breaking). Besides, the angles between the directions of soliton propagation and the  x-axis in the KP2 equation are not small that also contradicts to the applicability of the KP2 equation. Thus, to quantitatively describe the interesting and rather ubiquitous multisoliton patterns of large amplitudes in shallow basins, another, strongly nonlinear models are necessary.

 5. Application of the Kinematic Approach to the 2D Benjamin-Ono Equation

 5.1. Theoretical Formulation

When the stratification in the deep ocean is such that one of the layers is thin in comparison with the wavelength of internal wave, the basic equation describing long weakly nonlinear waves is the Benjamin-Ono (BO) equation; its 2D version derived in Refs. [Grimshaw, 1981; Grimshaw and Zhu, 1994; Matsuno, 1998; Tsuji and Oikawa, 2001] is:

 ∂∂x(∂η∂t+αη∂η∂x+βπ∂2∂x2℘∫−∞+∞η(x′,t)dx′x′−x)=
  

	
  −c02∂2η∂y2,
	(15)	


 where the symbol  ℘ stands for that the principal value of the integral should be considered and the expression for the coefficients  c,  α, and  β can be found in the papers cited above. Unlike the one-dimensional version, this equation is non-integrable.

This equation has a single solitary solution representing a plane wave obliquely propagating at an angle to the  x-axis:

  

	
  η(x,y,t)=A1+(kx+ly−ωt)2,
	(16)	


 where 

  

	
  ω(k,l)=βk2+c02l2k.
	(17)	


The soliton amplitude is determined solely by the parameter  k:  A=4βk/α, whereas its speed  V=(Vx2+Vy2)1/2 (in the reference frame moving with the velocity  c0 in which equation (15) is written) depends both of  k and  l:

 V=ω(k,l)k2+l2=
  

	
  αA4(1+2cαAtan2⁡φ)cos⁡φ
	(18)	


 For the components of the soliton velocity the formulae are the same as in Eq. (11). 

The exact two-soliton solution representing two plane waves propagating at an angle to each other is unknown, whereas in 1D case the BO equation is completely integrable and has  N-soliton solutions (see, e.g., [Ablowitz and Segur, 1981; Matsuno, 1979, 1980]). Soliton interaction in the 2D case was studied in Ref. [Matsuno, 1998] by means of the asymptotic approach and numerically in Ref. [Tsuji and Oikawa, 2001], however nether the direction, nor the speed of the pattern propagation were studied in those papers.

The kinematic approach developed in Section 4 yields that the direction of the pattern drift is determined by the angle  δ=φ1+γ1=φ2−γ2, and the speed of the drift is  U=V1/cos⁡γ1, where  φ1=arctan⁡(l1/k1) is the angle between the direction of motion of one of the solitons with the  x-axis, and  γ1 is the angle between its front and the perpendicular to the direction of motion which is determined by Eq. (2). Thus, again with the help of the kinematic approach we can determine the direction and speed of motion of two-soliton pattern if we know the parameters of individual BO solitons,  k1,2 and  l1,2, although the front shifts cannot be determined from this approach. The attempt to determine the front shifts was undertaken by Matsuno [1998] on the basis of an asymptotic theory. We are currently developing an alternative asymptotic theory to derive the front shifts; the result will be published elsewhere.

 5.2. Internal Waves in the Two-Layer Benjamin-Ono Model

A typical application of the BO equation is related to the oceanic internal waves. In many observations, the water stratification is close to the two-layer, including the cases when the thickness  h of the upper layer is much smaller than the total depth  H. If the characteristic length  λ of internal waves is such that  h≪λ≪H, then the wave can be described by the 2D BO equation (15). In the latter, for the two-layer model,  η(x,y,t) stands for the displacement of a pycnocline, and the coeffcients of Eq. (15) in the Boussinesq approximation are (see, e.g., [Apel et al., 2007]):

  

	
  c0=δρρgh,α=−3c2h,β=ch2,
	(19)	


 where  c0 is the linear long wave speed,  δρ/ρ is the relative density difference between the layers, and  g is the acceleration due to gravity.

Here, we apply the kinematic approach to the observational data presented for the Case A in [Wang and Pawlowicz, 2012] for internal waves in the Strait of Georgia, Canada (see Figure 2 above). The stratification in the Strait was indeed close to two-layer with the thickness of the upper layer  h≈5 m,  δρ/ρ≈0.014, and the total average depth  H=150 m. With such parameters, one can readily estimate the speed of long linear waves on the pycnocline,  c0=0.82 m/s, and the coefficients (15) of nonlinearity,  α=−0.246 s −1 and dispersion  β=2.048 m 2/s. Below we follow the authors' presumption that the observed pattern represents the interaction of two solitary waves, whereas in such a case, the post-interaction western front in Figure 2b should be parallel to the eastern front, as shown by the green line with the upper index T.

The amplitudes of solitary waves estimated in that paper with the eastern and western fronts were equal approximately  A~1,2=−3.3 m. The directions of front motion are shown in Figure 2b) above:  φ1=−60° and  φ2=23° with respect to the  x-axis, so that the angle between the wave fronts is  γ=83°. Using these data and the relationship between the soliton amplitude and parameter  k,A=4βk/α (see the formula after (17)), we find for the western front in Figure 2b):  k1≈0.1 m −1,  l1=k1⋅tan⁡(φ1)≈−0.171 m −1 and for the eastern front,  k2=k1≈0.1 m −1,  l2=k2⋅tan⁡(φ2)≈0.042 m −1. These parameters allow one to estimate the characteristic widths of solitary waves,  Λi=1/(ki2+li2)1/2:  Λ1≈5.05 m,  Λ2≈9.3 m. Then, using Eq. (18), we find that  V1≈0.72 m/s,  V2≈0.26 m/s. The speed of a soliton front in the immovable reference frame is given by the formula:

  

	
  V~=(c0+Vcos⁡φ)2+(Vsin⁡φ)2,
	(20)	


 which yields for the western front  V1~=1.33 m/s and for the eastern front,  V2~=1.06 m/s. These values agree with data presented in Figure 9 of [Wang and Pawlowicz, 2011].

Now, using Eq. (2), we find the angles between the soliton fronts and the normal to the direction of the whole pattern drift,  γ1=34.2° and  γ2=131.2°. This allows one to find the speed of the whole pattern drift,  U~=1.61 m/s, as well as the direction of its motion with the angle  δ=−25.8° to the  x-axis. The corresponding velocity vector  U~ is shown by the red arrow in Figure 2b. Dashed red line labelled "Norm" shows the axis normal to vector  \bfseriesU~. 

We have also estimated the parameters of the bridge between the solitary wave fronts (the "merge front" in Figure 2b. Given the angle of the bridge  φ3=−4° with respect to the  x-axis (see Figure 2b and using Eqs. (2) and (3), we find its speed and amplitude  V~3≈1.49 m/s,  A~3≈−11 m, respectively; the corresponding parameters  k3 and  l3 are:  k3≈0.329 m −1,  l3≈−0.023 m −1, and the characteristic width of the bridge  Λ3≈3 m.

However, there is again a certain disagreement between small-angle approximation on which the 2D BO equation (15) is based, and the observed pattern where the angles between the soliton fronts are not small. On the other hand, since in this case the soliton amplitudes are known from the measurements, the velocities of solitons can be obtained independently from the corresponding one-dimensional BO equation in which the direction  x is normal to the given soliton. Thus, instead of Eq. (18), we let  V1,2=c0+αA1.2/4 and, respectively,  Λ1,2=4β/αA1,2. Then, we find that the speeds of soliton fronts in the immovable coordinate frame are  V1≈0.94 m/s and  V2≈1 m/s. Using Eq. (2), we find the angles between the soliton fronts and the normal to the direction of the whole pattern drift,  γ1=43.9° and  γ2=39.1°. This allows to find the speed of the whole pattern drift,  U1=1.3 m/s, as well as the direction of its motion with the angle  δ=−16.1° to the  x-axis. Vector  U1 is shown in Figure 2b) by black arrow.

The parameters of the bridge between the solitary wave fronts can be estimated in a similar way. Given the angle of the bridge  φ3=−4° to the  x-axis (see Figure 2b) and using Eqs. (2) and (3), we find first the angle between the bridge front and new normal to the drift velocity,  γ3=−12.1°. Then, the bridge speed and amplitude are  V3≈1.27 m/s and  A3≈−7.36 m, respectively; the parameters  k3≈0.221 m −1,  l3≈−0.015 m −1, and the characteristic width of the bridge is  Λ3≈4.53 m.

These results differ, albeit not very strongly, from those using the 2D BO equation (for example, the drift directions differ by  9.7°). The direct approach is simpler and supposedly more reliable, and it is recommended in the cases when solitons amplitudes are known from the experiment.

 6. Conclusion

In this paper we have suggested a simplified kinematic description of the two-dimensional patterns of obliquely interacting solitary waves. This approach is applicable to solitons in any model, including those described by non-integrable and not necessarily weakly nonlinear equations. To validate the suggested approach, we compared it with the analytical results of the integrable KP2 equation, the only two-dimensional physical model for which the exact solution is known for now. The developed method allows one to calculate directions and speeds of the entire wave pattern propagation, including the cases of resonant configurations. As an application, we have considered the observational data for the internal waves on the interface between two layers [Wang and Pawlowicz, 2012] using the kinematic approach for the 2D BO model, and, more directly, using the soliton velocities valid at any propagation angles. We also have evaluated multisoliton pattern parameters within the dimensionless KP2 equation suggested in [Ablowitz and Baldwin, 2012] for the modelling of the observed patterns in the shallow sea areas, and briefly discussed the problems arising due to the strong nonlinearity and large angles between the soliton fronts.

In the future, we hope to extend the kinematic approach to the consideration of more complicated problems that, in our opinion, are not sufficiently clarified in the existing literature. One of such problems is the description of non-stationary dynamics of obliquely interacting solitons; another is calculation of phase shifts in the non-integrable models. The approach can be further developed for the application to surface and internal waves described, for example, by the 2D Gardner equation, Boussinesq set of equations, and other model equations used not only in the fluid mechanics.
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Figure 1. (colour online). Photographs of observed wave patterns demonstrating different cases of solitary wave interaction on a shallow water, the X-type (a), H-type (b), and Y-type (c). Photos were copied from Figures 1, 2 and 3 in the paper [Ablowitz and Baldwin [2012] (more similar photos can be found in the websites (Ablowitz, M. J., Photographs. Available online (accessed on 2 April 2020): https://sites.google.com/site/ablowitz/line-solitons/x-type-interactions) and (Baldwin, D. E., Nonlinear waves. Available online (accessed on 2 April 2020): http://www.douglasbaldwin.com/nl-waves.html).
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Figure 2. (colour online). a) The image of interacting internal soliton fronts taken from an aircraft in Strait of Georgia, Canada (this is a copy of Figure 5 from [Wang and Pawlowicz [2012]). b) A schematic sketch of the interacting wavefronts shown in frame (a) and their individual directions of propagation. As a result of interaction of the western front with the eastern front, the bridge between them (the merged front) is generated. This sketch is the slightly processed copy of Figure 7 from [Wang and Pawlowicz [2012]. For details see Subsection 5.1.
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Figure 3. (colour online). Schematic sketch of two interacting solitary waves experiencing finite nonlinear front shifts (a) and an infinite front shift (b).
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Figure 4. (colour online). Contour-plots of soliton fronts as per solution (12), (13) and (5) with the soliton parameters in the frame a) are:  k1=1,  k2=1.1,  l2=−l1=9.0726×10−2 ( B=2.36×10−8), soliton amplitudes are  A1=3,  A2=3.63. In the frame b)  k1=0.1,  k2=0.11,  l2=−l1=1.9053×10−2 ( B=2.16×104), soliton amplitudes are  A1=0.03,  A2=0.0363. The plots were generated for  α=β=1 and  c=2 in the domain  (−100,100)×(−500,500) in frame a) and in the domain  (−250,250)×(−1000,1000) in the frame b).
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Figure 5. (colour online). Contour-plots of soliton fronts as per solution (12), (13) and (5) with the soliton parameters are:  k1=1,  k2=1.1,  l2=−l1, soliton amplitudes are  A1=3,  A2=3.63. In frame (a)  l2=lc1=9.072647087265×10−2 so that  B=0; in frame (b)  l2=lc2=1.90525588833×10−2 so that  B=∞. The plot was generated for  α=β=1 and  c=2 in the domain  (−100,100)×(−500,500) in frame (a) and in the domain  (−250,250)×(−1000,1000) in frame (b).
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Figure 6. (colour online). Contour-plots of soliton fronts as per solution (12), (13) and (5) with the soliton parameters as in Figure 3 at different time moments. The plot was generated for  α=β=1 and  c=2 in the domain  (−100,100)×(−500,500) in frame a) and in the domain  (−1000,1000)×(−1000,1000) in the frame b).
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\abstract{Problem of area's zoning is very important and is one of the main problems of modern geographical science. Our point is to from a modern approach, based on the machine learning methods to provide zoning of any area. Key ideas of this methodology, that any distribution of factors that form any geographical system grouped around some clusters -- unique zones that represents specific nature conditions. Formed methodology based on several stages -- selection of data and objects for analysis, data normalization, assessment of predisposition of data for clustering, choosing the optimal number of clusters, clustering and validation of results. As an example, we tried to zone a surface layer of the Black Sea. We find that optimal number of unique zones is~3. Also, we find that the key driver of zone forming is a location of the rivers. Thus, we can say, that applying a machine learning approach in area's zoning tasks helps us increasing the quality of nature using and decision-making processes.}



\section{1. Introduction}



The problem of zoning has always been and will be the main problem of geographical science. In this context, region or zone is the main territorial system, which is always part of larger regional units. Based on this, zoning is the process of identifying and studying the objectively existing territorial structure, organization, and hierarchical subordination of physical and geographical complexes.

Zoning of any area includes several important goals

 [\itc{Vinokurov et al.,} \reflink{Vinokurov05}{2005};

\itc{Zaika} \reflink{Zaika14}{2014}]:



\begin{enumerate}

\item

Finding an existing physiography complexes;

\item

	mapping of physiography maps;

\item

	deep understanding of the complex composition;

\item

	research of processes and factors, that are forming complexes;

\item

	complex classification;

\item

Finding of any interactions between factors or complexes;

\item

	developing of physiography zoning methods.

\end{enumerate}



Thus, the main goal of this paper was to form a modern mathematical methodology, based on machine learning methods to provide zoning of any area.



In the last years problem of area's zoning and its methodology was tried to solve by several authors.



For example % G. N. Skrebets and S. M. Pavlova

\itc{Skrebets and Pavlova} [\reflink{Skrebets19}{2019}]

conducted a physical and geographical zoning of the Black Sea using correlation analysis. They used a mapping based on relationship between phytoplankton and natural factors, that limiting its distribution. Using this approach, they identified 5 regions that differ from each other in quantitative way, as well as in combination of relationships.



From a biological point of view, this problem was considered by

%V.~E.~Zaika

\itc{Zaika} [\reflink{Zaika14}{2014}].

He carried out biological zonation of the Black Sea and also described the main problems of its implementation. The principle of distinguishing different regions was based on quantitative analysis of the dominant species in different regions of the Black Sea.



The widespread use of physiographic zonation received in landscape ecology. %Yu.~I.~Vinokurov, Yu.~M.~Tsimbaleya and B.~A.~Krasnoyarova

\itc{Vinokurov et al.} [\reflink{Vinokurov05}{2005}]

proposed a methodology and implemented the physical and geographical zoning of Siberia. Based on various natural features, they identified more than 100 different regions with unique physical and geographical conditions.



%A. Tamaychuk

\itc{Tamaychuk} [\reflink{Tamaychuk17}{2017}]

in his paper tried analytical approach to zoning Black Sea area, based on main factors of spatial differentiation, distribution features of environmentally significant characteristics and modern ideas about the theory and methods of physiographic zoning. He divided area of the Black Sea into 3 water-provinces -- North-West moderate, North-East moderate and subtropical.



Mathematical approach was shown in %E. Sovga

\itc{Sovga et al.} [\reflink{Sovga05}{2005}]

work. They used depth, mean values of temperature and salinity, differences and features in flora and fauna as a factor. They divided area of the North-West part of the Black Sea into 4 groups -- West, Karkinitsky, Central and Kalamitsky.



V. Agostini

[\itc{Agostini et al.,} \reflink{Agostini15}{2015}]

in her paper tried to make a zoning of marine environment in St.~Kitts and Nevis. For her analysis, she used 37 spatial layers, that represent different factors and fully described functionality of the research area, that was divided into 3 major groups -- ``habitat'', ``species'' and ``human use''. As the result, she distinguished 4 major zones -- ``conservation'', ``transportation'', ``touristic'' and ``fishing''.



\itc{Petrov and Bobkov} [\reflink{Petrov17}{2017}]

tried to form the concept of hierarchical structure of large marine ecosystems in the Arctic shelf of Russia. Based on environmental variables, they distinguished 7 eco-regions of the Barents Sea -- South-Western, Pechora Sea, Central basin south, Central basin north, Novaya Zemlya shore, Svalbard Archipelago and Franz Josef Land Archipelago.



%Fyhr F., Nilsson A. and Sandman N. [

\itc{Fyhr et al.} [\reflink{Fyhr13}{2013}]

tried to review all of the modern concepts and tools for Ocean zoning. Based on their work, the most actual and commonly used tools are Atlantis, Cumulative Impacts Assessment Tool, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), Marine Protected Areas Decision Support Tool (Marine Map), Marxan and Marxan with Zones, NatureServe Vista and Zonation.





\section{2. Clustering as Physiographic Zoning Method}



\enlargethispage{-1pc}



Clustering is a task of dividing the entire dataset into separate groups of homogenous objects, that are similar to each other, but have distinct difference between this separate groups

[\itc{Aleshin and Malygin,} \reflink{Aleshin19}{2019}].

Clustering algorithms are divided in two groups -- hierarchical and iterative.



I. Hierarchical -- consistently build clusters from already found clusters.

\begin{enumerate}

\item

Agglomerative (unifying) -- start with individual elements, and then combine them;

\item

separation -- start with one cluster, and then -- divide them;

\end{enumerate}



 II. Non-hierarchical -- optimize a certain objective function.

\begin{enumerate}

\item

Graph theory algorithms;

\item

EM algorithm;

\item

 $K$-means algorithm ($k$-means clustering);

\item

fuzzy algorithms.

\end{enumerate}



Any clustering algorithm can be considered effective if the compactness hypothesis is satisfied

[\itc{Shi and Horvath,} \reflink{Shi06}{2006}].



Physiographic zoning using clustering method is carried out in several stages:

\begin{enumerate}

\item

Selection of data and objects for analysis;

\item

data normalization;

\item

assessment of predisposition of data for clustering;

\item

choosing the optimal number of clusters;

\item

clustering and validation of results.

\end{enumerate}



Formally, almost all clustering tasks come down to this form. Let  $X$ be the set of objects, $Y$ is the set of numbers (names, labels) of clusters. The distance function between objects is specified as

$\rho(x,x\prime)$

[\itc{Collins et al.,} \reflink{Collins02}{2002}].

There is a finite training set of objects $X^m={x_1,...,x_n}\in X$. So, the main goal of clustering is to divide dataset into several disjoint subsets. These subsets called clusters and consist from objects, that are closed to the

$\rho$-metric. Objects from different clusters were significantly different. For every object $x_i\in X^m$ assigned the number of cluster $y_i$

[\itc{Marron et al.,} \reflink{Marron14}{2014}].



\subsection{2.1. Data Normalization}



Data normalization is one of the feature transformation operations that is performed during their generation at the data preparation stage. In case of machine learning, normalization is a procedure for preprocessing input information (training, test and validation samples, as well as real data), in which the values of the attributes in the input vector are reduced to a certain specified range of values, for example: $[0...1]$ or $[-1...1]$.



The importance of data normalization comes from the nature of algorithms and models in machine learning. The values of raw data can vary in a very wide range and differ from each other by several orders

[\itc{Rybkina et al.,} \reflink{Rybkina18}{2018}].

The work of such machine learning models like neural networks or Kohonen self-organizing maps with not normalized data will be incorrect -- difference between attribute's values can cause instability of the model, that will lead to worth learning results and slowing the modelling process. Also, some parametric machine learning models require symmetric and unimodal data distribution. After normalization, all the numerical values of the input attributes will be reduced to the same amount -- a certain narrow range

[\itc{Criminisi et al.,} \reflink{Criminisi12}{2012}]. %%% ??? +



There are many ways to normalize feature values in order to scale them to a single range and use them in various machine learning models. Depending on the function used, they can be divided into two large groups: linear and non-linear

[\itc{Tealab et al.,} \reflink{Tealab17}{2017}].

With nonlinear normalization, the calculated ratios use the functions of the logistic sigmoid or hyperbolic tangent. In linear normalization, the change of variables is carried out proportionally, according to a linear law.



The most common methods for data normalization are:



Minimax -- linear data transformation in the range $[0..1]$, where the minimum and maximum scalable values correspond to 0 and 1, respectively:



\begin{eqnarray*}    % \begin{equation}\label{1}

X_{\mathrm{norm}}=\frac{X-X_{\min}}{X_{\max}-X_{\min}}

\end{eqnarray*}

$Z$-scaling based on the mean and standard deviation: dividing the difference between the variable and the it means by the standard deviation:



 \begin{eqnarray*}      % \begin{equation}\label{2}

 z=\frac{x-\mu}{\sigma}

\end{eqnarray*}

Decimal scaling -- performed by removing the decimal separator of the variable value

[\itc{Seber and Lee,} \reflink{Seber03}{2003}].



In practice, minimax and $Z$-scaling have similar areas of applicability and are often interchangeable. However, in calculating the distances between points or vectors in most cases, $Z$-scaling is used, while minimax is useful for visualization.



\subsection{2.2. Assessment of Predisposition of Data for Clustering}



One of the most common problem of unsupervised machine learning is that clustering will form groups, even if the analyzed dataset is a completely random structure. That's why the first validation task that should be applied even before clustering is to assess the overall predisposition of the available data to cluster tendency

[\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



There are two common indicators, that can show us cluster tendency -- Hopkins statistics and Visual Assessment of cluster Tendency or ``VAT diagram''.



To calculate Hopkins statistics, we need to create B pseudo-datasets, randomly generated based on the distribution with the same standard deviation as the original dataset. For each observation $i$ from $n$, the average distance to $k$ nearest neighbors is calculated as follows:

$w_i$ between real observations and $q_i$ between generated observations and their closest real neighbors

[\itc{Keller et al.,} \reflink{Keller85}{1985};

\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].

Then the Hopkins statistics calculates as follows:



 \begin{eqnarray*}

H_{\mathrm{ind}} = H_{\mathrm{ind}}=\frac{\sum_{n}w_i}{\sum_{n}q_i+\sum_{n}w_i}

\end{eqnarray*}

If $H_{\mathrm{ind}}>0.5$,  then it will correspond to the null hypothesis that $q_i$ and $w_i$ are similar and values are distributed randomly and uniformly. If  $H_{\mathrm{ind}} < 0.25$ this indicates that a dataset has a tendency to data grouping.



For visual assessment of clustering tendency, the best way is to using VAT diagram. VAT algorithm consists of:



\begin{enumerate}

\item

Compute the dissimilarity matrix between the objects in the data set using the Euclidean distance measure;

\item

reorder the dissimilarity matrix so that similar objects are close to one another. This process creates an ordered dissimilarity matrix;

\item

the ordered dissimilarity matrix is displayed as an ordered dissimilarity image, which is the visual output of VAT.

\end{enumerate}



The VAT detects the clustering tendency in a visual form by counting the number of square shaped dark blocks along the diagonal in a VAT image [\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



\subsection{2.3. Choosing the Optimal Number of Clusters}



At this moment there's two main ways to choose an optimal number of clusters -- ``elbow'' method and using of gap statistics

[\itc{Chapelle et al.,} \reflink{Chapelle06}{2006}].



The ``elbow'' method -- considered the pattern of variation in the dispersion of $W_{\mathrm{total}}$  with increasing in number of groups  $k$

[\itc{Tomar et al.,} \reflink{Tomar18}{2018}].

Combining all of the founded  observations in one group, we'll have the biggest intraclass dispersion, that will decrease to 0 when $k\rightarrow n$.

The point, when this decreasing of dispersion will be slowing down, called ``elbow''

[\itc{Seber and Lee,} \reflink{Seber03}{2003};

\itc{Thiery et al.,} \reflink{Thiery06}{2006}].



An alternative to the ``elbow'' method is using gap statistics, which are generated based on resampling and Monte-Carlo simulation processes. For example, let $E_n^\ast{\log(W_k^\ast)}$ denotes the valuation of average dispersion $W_k^\ast$, obtained by bootstrap method, when $k$ clusters are formed by several random objects $f$ from the original dataset of $n$ size. Then gap statistics will be calculated as follows:



 \begin{eqnarray*}          % \begin{equation}\label{4}

\mathrm{Gap}_n(k)=E_n^\ast{\log(W_k^\ast)}-\log(W_k)

\end{eqnarray*}

 $\mathrm{Gap}_n(k)$ determines the deviation of the observed dispersion $W_n$ from its expected value, if the original data formed only one cluster.



\subsection{2.4. Validation of Clustering Results}



Currently, there are several ways to validate the results of clustering:



\begin{enumerate}

\item

 External validation -- comparing the results of cluster analysis with already known validation dataset;

\item

relative validation -- evaluating the structure of formed clusters by changing the algorithm parameters;

\item

internal validation -- obtaining internal information of clustering process;

\item

assessment of the clustering stability using resampling.

\end{enumerate}



The most widespread indexes are silhouette index and Calinski-Harabasz index [\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



One of the approaches to validate the results of clustering is the Calinski-Harabasz index.



Let ${\overline{d}}^2$  is the mean square distance between elements in clustering variety and ${\overline{d}}_{c_i}^2$ -- mean square distance between elements in cluster $c_i$. Then the distance inside groups will be:



 \begin{eqnarray*}   % \begin{equation}\label{5}

\mathrm{WGSS} = \frac{1}{2}\sum_{i=1}^{c}(n_{c_i}-1){\overline{d}}_{c_i}^2

\end{eqnarray*}

and the distance between groups will be:



\begin{eqnarray*} % \begin{equation}\label{6}

\mathrm{BGSS} = \frac{1}{2}\left(\left(c-1\right)

{\overline{d}}^2+\left(N-c\right)A_c\right)

\end{eqnarray*}

where $a_c = A_c/\overline{d}^2$ -- is weighted mean difference of distances between cluster centers and a mutual variety center. Then the Calinski-Harabasz index will be:



\begin{eqnarray*}

\mathrm{VRC} = \frac{\mathrm{BGSS}/(c-1)}{\mathrm{WGSS}/(N-c)} =

\end{eqnarray*}

 \begin{eqnarray*}

 \frac{{\overline{d}}^2+ [(N-c)/(c-1)]A_c}{{\overline{d}}^2-A_c} =

\end{eqnarray*}

 \begin{eqnarray*}  %  \begin{equation}\label{7}

 \frac{1+[(N-c)/(c-1)]a_c}{1-a_c}

\end{eqnarray*}

where $a_c=A_c/\overline{d}^2$. We can see, that if the all distances between points are similar, then

$a_c=0$ and $\mathrm{VRC} = 1$. $a_c=1$

  characterize the prefect clustering. The maximum value of  corresponds to optimal cluster's structure.



Another approach to validate the clustering results is using the silhouette index. Its values shows the degree of similarity between object and cluster that he belongs to, compared to another clusters

[\itc{Shi and Horvath,} \reflink{Shi06}{2006};

\itc{Soliman et al.,} \reflink{Soliman17}{2017}].



Silhouette of every cluster estimates as follows: let object $x_j$ corresponds to cluster $c_p$. Denote the mean distance from this object to other objects from this cluster  $c_p$ as $a_{pj}$  and the mean distance from this object $x_j$ to objects from another cluster as

$c_q,q\ \neq\ p $ as $d_{q,j}$.

Let $b_{pj} = \min_{q\neq p}d_{qj}$. This value means the measure of dissimilarity of single object with objects from nearest cluster. Thus, the silhouette of every single element of cluster calculates as:



 \begin{eqnarray*}   % \begin{equation}\label{8}

S_{x_j}=\frac{b_{pj}-a_{pj}}{\max(a_{pj},b_{pj})}

\end{eqnarray*}

The highest values of $S_{x_j}$ corresponds to better affiliation of element  $x_j$

to cluster $p$.  The evaluation of all cluster structure provided by averaging the value by elements:



 \begin{eqnarray*}   %  \begin{equation}\label{9}

\mathrm{SWC} = \frac{1}{N}\sum_{j=1}^{N}S_{x_j}

\end{eqnarray*}

Better clustering characterized by bigger values of , that achieved when the distance inside cluster $a_{pj}$ is small and the distance between objects from neighboring clusters $b_{pj}$ is big.



\section{3. Black Sea Surface Physiographic Zoning}

\subsection{3.1. Research Area}



The Black Sea is an inland sea, that belongs to the basin of the Atlantic Ocean. Its maximum depth reaches the mark of 2258 meters

(\figref{1})

[\itc{Barratt,} \reflink{Barratt93}{1993}].

The total area of the Black Sea is 420,325~km$^2$, and with the Sea of Azov -- 462,000~km$^2$

[\itc{Murray,} \reflink{Murray05}{2005}].



The average seasonal cycle of geostrophic circulation of the Black Sea [\itc{Ivanov and Belokopytov,} \reflink{Ivanov11}{2011}]:



\begin{itemize}

\item

	From January to March -- a single cyclonic rotation with a center in the eastern part of the sea, the western circulation is weakly expressed;

\item

from April to May -- a single cyclonic rotation with a center in the western part of the sea, the eastern cycle is weakly expressed;

\item

from June to July -- two cycles, the western more intense;

\item

from August to September -- two cycles, the eastern one is more intense;

\item

from October to December -- two cycles of equal intensity.

\end{itemize}



About 80\%

of the river flow is concentrated in the northwestern part of the Black Sea. The Caucasian rivers contribute about 13\%

of the water balance, while the runoff from Turkeys rivers is about 7\%

[\itc{Ghervas} \reflink{Ghervas17}{2017}].  % Ghervas.

The contribution of the Crimean rivers a is insignificant

[\itc{Belokopytov and Shokurova,} \reflink{Belokopytov05}{2005}].



The biggest river, that flows into the Black Sea is Danube. The Danube usually brings about 203~km$^3$ of freshwater into North-Western part of the Black Sea, decreasing the level of salinity there. Another big river, that flows into Black Sea is Dnieper from Ukrainian part and Rioni from Georgian

[\itc{Ozsoy and Unluata,} \reflink{Ozsoy97}{1997}].



\begin{figure*}[t]                        %  Fig  1

\figurewidth{35pc}

\setimage{}{}{35pc}{}{2020es000707-f01}

\shortcaption{Bathymetric map of the Black Sea.}

\end{figure*}



\subsection{3.2. Data}



We used the monthly averaged data from Copernicus Marine Environmental Monitoring Service (CMEMS) -- Black Sea Reanalysis, which are based on 5 components:



\def\bottomfraction{.8}

\def\textfraction{.15}



\begin{table}[b]                                   % Table 1

\tablewidth{20pc}

\caption{Estimated Data Accuracy Results for Temperature and

Salinity. From Left Side in Each Row -- for 1995--2015 Data.

From Right -- for 2005--2015} \vspace{5pt}

\begin{tabular}

{@{}l@{\hspace{9pt}}

c@{\hspace{18pt}}

c@{}}

\hline

\\ [-7pt]

Feature & BIAS v4 & DMS v4 \\

 [7pt]  \hline   \\ [-4pt]

SST (\deg C)          & $-0.07/-0.07$ & 0.58/0.59 \\

T (\deg C) 0--100 m   & $-0.02/0.025$ & 0.87/0.74 \\

T (\deg C) 100--300 m & $-0.03/-0.003$ & 0.15/0.09 \\

T (\deg C) 300--800 m & $-0.02/-0.02$ & 0.11/0.05 \\

S (psu) 0--100 m      & $-0.014/0.002$ & 0.33/0.26 \\

S (psu) 100--300 m    & $-0.006/0.009$ & 0.19/0.15 \\

S (psu) 300--800 m    & $-0.005/-0.002$ & 0.05/0.03\\  [7pt]

\hline

\end{tabular}

\end{table}



\begin{enumerate}

\item

	Ocean model -- Hydrodynamic model, which is a part of the NEMO (Nucleus for European Modelling of the Ocean) project;

\item

	scheme of data assimilation (OceanVar) for temperature and salinity profiles, satellite data for sea surface temperature, sea level anomalies etc.;

\item

	assimilated data -- in-situ data for environmental variables;

\item

	recovery scheme for environmental variables;

\item

basic large-scale adjustments.

\end{enumerate}





Data from this model have a high level of correlation with in-situ data, that increasing with depth. For example, the accuracy of temperatures spatial distribution in the Black Sea at depth of 30~m

about $\pm{1.5}$\deg C, at the depth of 70~m it decreases to

$\pm{0.3}$\deg C and at the depth of 1100~m is about

$\pm{0.04}$\deg C

(\tabref{1}).    %Table 1).



The quality of the model data, as well as the model itself, improve with increasing of in-situ observations numbers.



For Black Sea surface physiographic zoning we used 6 environmental parameters -- sea surface temperature, sea surface salinity, dissolved oxygen level, PO$_4$ and NO$_3$ content and primary production level.



\subsection{3.3. Results}



To understand, does dataset has a tendency to form clusters, we calculated a Hopkins index using the R-package ``clustertend''. It was equal to 0.0194, that means that this dataset can form clusters.



To estimate an optimal number of clusters, we used the R-package ``factoextra''. Results shown in

\figref{2}.    % figure 2.



\begin{figure}[t]                        %   Fig  2

\figurewidth{20pc}

\setimage{}{}{20pc}{}{2020es000707-f02}

\caption{Determining an optimal number of $k$ by elbow-method.}

\end{figure}



As we can see at the

\figref{2},

the elbow of our curve is located at 3, thus we can distinguish 3 completely different zones in the surface waters of the Black Sea

(\figref{3}, \figref{4}).

Allocation of this zones due equally to all of analyzed factors, except dissolved oxygen.



\begin{figure*}[t]                        %   Fig  3

\figurewidth{35pc}

\setimage{}{}{41pc}{}{2020es000707-f03}

\caption{Seasonal zoning of the Black Sea.%

{\bf A} -- Winter, {\bf B} -- Spring, {\bf C} -- Summer, {\bf D} -- Autumn.}

\end{figure*}



Based on statistical analysis all of these factors divided in two groups. First -- phosphates concentration, primary production and chlorophyll-$\alpha$, which are derivatives from each other -- the amount of phosphates impacts on amount of primary production and amount of primary production impacts on amount of produced chlorophyll-$\alpha$. Second are temperature, salinity and nitrates concentration.



Studying water objects, it's important to know a seasonal variability of zones, because of its very high change capability in time. Comparing with land, water systems aren't stable for long period of time and spatial distribution of factors can vary from season to season.



Generally, as we can see in figure, main reasons of zoning pattern forming are quantitative and qualitative characteristics on flows.



In winter season, there is a clear divide of the Black Sea from west to east. A significant role in this process is played by the interaction of the Black Sea with the Sea of Marmara, river flows in the northwest of the Black Sea and in the Caucasus and, in some cases, areas near the Southern coast of Crimea and the Kerch Peninsula due to the activity of currents from the Sea of Azov.



In spring season, the divide of the Black Sea occurs from north to south. In this case, a significant impact on this process is exerted by the significant flow of such rivers as the Dniester, Danube and Dnieper in the north-west of the Black Sea and the influx of water from the Sea of Marmara. Due to the interaction between two water masses radically different in their characteristics, it forms an intermediate zone between them, covering an area from the Kerch Strait to the Danube Delta.



In the summer, due to the nature of the internal currents in the Black Sea and changes in the volume of river flow, more saline water from the Sea of Marmara reaches the Danube. In spatial terms, the pattern of zones distribution in the Black Sea is similar to the winter one, in which they are located from east to west. The formation of the intermediate second zone is most likely due to the interaction with more fresh and cold water coming from the Sea of Azov.



In autumn, the formation of more fresh and colder waters off the coast of Turkey is observed, which is due to the significant flow of the rivers of the Turkish coast. The distribution pattern is more similar to the spring one, with significantly increased in size zone~1.



Annual zoning of the Black Sea is presented on  figref{4}.



\subsubsection{Zone 1.}

 Located in the North-West part of the Black Sea. Flows from Danube, Dniester, Dnieper and Southern Bug completely equal of 3/4 of a total flow into the Black Sea. Dominated northern and north-western winds helps in spreading of matters, endured by rivers. The main feature of this part of the sea is an active interaction of fresh water from rivers with salty water from south of the Black Sea. Near the shore water salinity reaches values about $7-8 \pm$. Temperature of water surface, as a salinity, increasing from shore to open sea. Temperature differences reaches

 1.5--2.0\deg C. Bioproductivity of this zone is quite high, mainly cause of active flowing rivers matter and\linebreak

fresh water. But local hydrophysical and hydrochemical

conditions condition high variability of bioproductivity with

fishkills.



\subsubsection{Zone 2.}

 Basically, forming of this zone determined by interactions between 1-st and 3-rd zones, where as a results of Black Sea

 currents and flows from big rivers, cold fresh water from the coastal areas mixed up with more cold and salty water from

 central part of the Black Sea. Located in the north-west part of the Black Sea, near the Crimean-Caucasus shore of Russia,

 Georgian and Turkey coasts. Biggest rivers here are Rioni, Tuapse, Kizilirmak, Yesilirmak and Inguri. Like the zone~1, location

 of the zone 2 is due to the flows from rivers. But cause of lower levels of flow amount, compared with the zone 1, their

 impact  on water of the Black Sea is quite lower, but noticeable. Values of salinity here doesn't differ from the central part

 ($1-2 \pm$ fresher), same as a temperature.



\begin{figure*}[t]                          %  Fig  4

\figurewidth{35pc}

\setimage{}{}{35pc}{}{2020es000707-f04}

\shortcaption{Physiography zoning of the Black Sea.}

\end{figure*}



\subsubsection{Zone 3.}

 Natural conditions of this zone are a common to the Black Sea. The area of this zone is the biggest. Located in the south and central part of the Black Sea and near the Kerch Strait. Salinity here is a quite high -- $19-20 \pm $, and reaches $24 \pm $ near the Bosporus Strait. The impact of the Sea of Azov is quite low, due to specificity of Azov currents. Amount of phosphates and nitrates is low due to lack of any big rivers, which are the main sources of their presence in the sea water. As a result, concentrations of chlorophyll-$\alpha$ is quite low too.



\section{4. Conclusions}



Thus, the methodological approach, showed in this paper, helps us to use it fully in zoning tasks to provide distinguishing from them completely different areas, that aren't similar. As we can see, the main advantages of this approach are lack of subjectivity that is inherent to humans, high level of analysis accuracy, possibility of constant model's modification by adding new {\itshape in-situ} data or by modifying the algorithm itself. Also, it should be noted, that the indisputable advantage of this approach is the ability to use it in any kind of territory, both in size and in properties.



As we talk about disadvantages of this approach, we should note a strong dependency from input data quality and data normalization, which in some cases can lead to significant distortion in the analysis results. The same we can say about data size. With significant amount of data, it may be difficult to conduct the research, which leads to completely change the used algorithm or to significant reduction in data size and, as a result, to simplification of the model and distortion of the real results. Generally, we should note, that using of this approach is justified in most cases, but the need of improvement and further optimization of it doesn't disappear.



Obtained results helps us to understand that applying of this

approach can helps us to go away from analytical and empirical

zoning approaches to have a math basis, uniformity of

calculations and process automatization. Conducted as an

example of this approach application, Black Sea physiographic

zoning generally is quite similar with previous works. It was

determined, that the most optimal number of the dissimilar

groups, based on analyzed factors is 3. Generally, their

spatial location based on places where rivers flows into the

Black Sea, and as a result more comfortable for different flora

and fauna. For example, the conditions, that formed in the

second area is quite comfortable for spawning of many

commercial fishes, Like {\itshape Liza haematocheilus},

{\itshape Engraulis encragicolus}, {\itshape Liza aurata},

 {\itshape Mugil cephalus}, etc. Thus, applying a machine learning approach in area's zoning tasks helps us to increase the quality of nature using and decision-making process.
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