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 Abstract

One of the most widely used indices of geomagnetic activity is the  K-index. It was proposed in 1938 by Julius Bartels as a measure of the influence of solar corpuscular radiation on the variations of the Earth's magnetic field. Among the essential requirements to indices of this type is its stationarity, i.e., stability of the rules by which it is calculated. Therefore, despite the known disadvantages of the  K-index, it is still being calculated according to the method, proposed by Bartels. Historically, at Russian geomagnetic observatories, the  K-index has been calculated using simplified methods. In this paper we compare the  K-index calculation routine at Russian observatories with the standard  K-index and planetary  Kp-index calculation technique. 

 Introduction

Indices of geomagnetic activity were designed to describe variations in the Earth's magnetic field induced by irregular causes [Mayaud, 1980; Zabolotnaya, 2007]. The  K-index characterizes variations in the horizontal component of the geomagnetic field over a 3-hour time interval at a specific observatory, being a measure of the range of irregular and rapid, storm-time magnetic activity [Bartels, 1938; Bartels et al., 1939; Love and Remick, 2007]. It is a quasilogarithmic index (it increases by one unit with approximately double increase of amplitude) and takes values from 0 to 9 for each 3-hour interval of Universal Time. To calculate the index, variations of the geomagnetic vector  D and  H components (previously  Z was also used) are considered. The regular part ( Sr) is subtracted from these variations and for each component in the remaining part the minimum and maximum values are determined. The maximum difference of these values is transferred into the  K-index according to a special table, which is individual for each observatory. Thus, in order to calculate the  K-index value, it is necessary to determine the scale and the regular part of variation  Sr.

 2. K-Index Calculation Methods

Bartels believed that the observed magnetic variations are divided into two parts – those induced by solar radiation that are not included in the  K-index and magnetic field disturbances induced by particle precipitation. The latter were included in the  K-index. Unfortunately, even now no clear and formal criteria for the division of these types of variations have been formulated. Initially, the technique for separating variations was gained experimentally through long practice and circulated within the observatory community at various seminars. In 1957 Bartels formulated the rules for calculating the  K-index [Bartels, 1957], and then Mayaud in [Mayaud, 1967] generalized a detailed instruction for determining the  K-index, which was adopted by the International Association of Geomagnetism and Aeronomy (IAGA). Nevertheless, the formulated rules remained only as general guidelines and observatory operators personal experience played a decisive role.

The  Sr variation, which is not considered by the  K-index, is called the daily solar variation and, unlike the solar  Sq variation, which is determined for a whole month, determined for each day individually. Many observatories (in particular, almost all Soviet and now Russian) were not able to adopt the original methodology and used a simplified technique for  K-index determination. According to the recommendations [Zabolotnaya, 2007] the  Sq variation was used instead of the  Sr variation. This does not correspond to the standard IAGA method that emphasizes that the  Sr variation must be calculated for each day individually and the use of  Sq variation, defined for the whole month, is unacceptable [Mayaud, 1967]. The necessity to determine  Sr for each day caused great difficulties in the development of computer methods for  K-index determination. This issue was actively researched in 1970s and discussed at the special IAGA symposia.

During manual determination of the  K-index using analog magnetograms, operator, based on his experience, corrects the obtained values by means of a special  Sq pallet, removing long-period trends in magnetic variations, considered beyond the  K-index [Zabolotnaya, 2007]. This description, being not strict from the mathematical point of view, caused significant difficulties for the development of computer programs for  K-index calculation. Mainly because the primary requirement to the  K-index calculated by a computer program using digital data was its maximum similarity to the one, manually calculated by operator.

To solve this problem IAGA formed a special working group, which compared manual and various automated methods on a large geomagnetic dataset and recommended a few methods [Coles and Menvielle, 1991; Menvielle, 1991; Menvielle et al., 1995]. Programs that implement these methods are available at http://isgi. unistra.fr/softwares. php. It was shown that these methods do not alter the statistical properties of the  K-index long-term distribution and do not distort the homogeneity of  K-index timeseries. They were approved by the Working Group on Indices at the IAGA General Assembly in Vienna in 1991 as acceptable for practical use. The most popular method, based on linear estimation approach, was proposed by the Finnish Meteorological Institute (widely known as the "FMI-method") [Menvielle, 1990]. The other three methods are: Hermanus algorithm, developed at Hermanus Magnetic Observatory (South Africa) [Hattingh et al., 1989]; KASM-method, developed at the Institute of Geophysics, Polish Academy of Sciences (Poland) [Nowo�y�ski et al., 1991]; and USGS-method, developed at the US Geological Survey (USA) [Wilson, 1987].

 3. Determination of the K9 Limit Value

The scale for conversion of geomagnetic variations into the  K-index value for any observatory is compiled using the same approach. The scale is built on the basis of the accepted minimum value for  K=9, i.e. geomagnetic variations exceeding this threshold are assigned the value of  K=9. This value is called the  K9 limit. The upper limit of variation amplitude for K=0 is obtained by multiplying the lower limit of amplitude for  K=9 by the coefficient 0.01. Amplitude limits for  K values from 1 to 8 points are obtained by multiplying the upper limit of amplitude of  K=0 by coefficients: 2, 4, 8, 16, 24, 40, 64, 100. The preliminary value of the lower limit for  K=9 is estimated based on the latitude of the observatory. Observatories, even those at the same latitude, may differ in the orientation of the magnetometers' sensors, intensity of induction current, etc. Due to the regional peculiarities of the observatory location, the relation between the observatory latitude and the scale is not well-defined by latitude and is finally determined only experimentally [Zabolotnaya, 2007].

The  K9 limit threshold is finally determined after several years of the observatory operation by comparing the  K-index values of a given observatory with the ones of the nearest observatories. It is assumed that the values of the  K-index at any given time may differ from one observatory to another, but they all reflect the global geomagnetic disturbance and should provide the same statistical distribution of the geomagnetic variations over a long period of time. It is better to make such a comparison within a full solar cycle or at least during the years of maximum solar activity, when large  K-index values are observed more often.

In addition to the  K-index of individual observatories, a global or planetary magnetic disturbance index  Kp is calculated to estimate the overall state of the magnetic disturbance on a global scale from the data of 13 medium-latitude observatories. The method of its calculation is described in publications [e.g., Bartels, 1949; Menvielle and Berthelier, 1991] and we will not focus on it here.

Since there are no observatories with IAGA-approved  K9 limit values for most of the Russian observatories, comparison with the planetary  Kp-index will be made. In order to understand how the changes in the  K9 limit are reflected in the statistical distribution of the  K-index values, the  K-index values for 2005–2016 were calculated for the  K9 limit of 600, 650, 700 and 800 nT, based on the 1-minute data of the Borok observatory (BOX) [Chulliat and Anisimov, 2008]. The time interval was selected in the way so as to include the maximum and minimum years of the solar cycle.
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	Figure 1

  Figure 1 shows the occurrence of different  K-index values at  K9=500 and 600 nT. The histogram shows that with the increasing accepted value of  K9 also increases the number of cases with low  K-index values (0 and 1), but the number of cases with the  K-index values of 2 and higher, on the contrary, decreases. In this situation, the higher is the  K value, the more significant is this decrease. At  K=2 the number of cases  K600 is less than the number of cases  K500 approximately by 5%, and at  K=6 by 50%. The same pattern is observed when comparing K distribution with respect to other  K9 values.
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  Figure 2 shows the connection of  K-index values calculated with  K9 equal to 500 and 600 nT. For this purpose, for each 3-hour interval, the value calculated with  K9=500 nT was plot along the  X-axis, while the  K value for the same moment calculated with  K9=600 nT was laid off along the  Y-axis. Apparently, there are not too many visible points on the chart, but in fact the total number of points on the chart reaches 35,000 (they just overlap each other). It is obvious that mathematical operations, like calculating the average, for  K-index (which is a logarithm actually) do not make much sense, but the regression coefficient and average values have been calculated for the qualitative estimation of influence. The regression coefficient between values  K500 and  K600 is equal to 0.89, average value  K500 is equal to 2.17 and  K600 is 1.90. This result is quite natural, as with large  K9 values the same magnetic field variation gives lower values of  K-index and average value of  K-index within the given data array.
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  Figure 3 shows a similar chart, but instead of the  K-index the  aK-index values are used. The  aK-index is a linear index that represents the normalized magnetic disturbance amplitude corresponding to the given  K-index value for a conventional station with the limit  K9=250 nT. Mathematical operations with  aK-index are physically feasible. The regression coefficient between the values of  a500 and  a600 is 0.80, the average value of  a500 is 12.09 and  a600 is 9.95. The average of eight daily values of  aK-index is  AK, which is the index, equivalent to the daily perturbation amplitude for a given observatory.  Ap is the linear equivalent to the planetary  Kp-index.

Similar ratio is also observed with the comparison of  K-index values calculated with other  K9 limit. Generally, all these examples show a significant difference in the distribution of  K-index values calculated with different  K9 limits. The regression coefficients for  K and  aK-indices is less than one (0.89 and 0.80 respectively), average values of  K and  aK also decrease with the increase of the  K9 limit value. Thus, any of these approaches makes it possible to determine whether a given  K9 limit value is overestimated or underestimated. Then which approach gives better result? The ratio of  K9 limits was set as  500/600=0.83, the regression coefficients are 0.89 and 0.86. The ratio of average  K values is 0.87 and the ratio of average  aK values is 0.82. Thus, to calculate the new  K9 limit value, the ratio of average  aK-index values gives the best estimate.
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  When calculating the  K-index for the Borok observatory the limit value  K9=600 nT was used. To validate this choice, the statistical distribution of the Borok  K-index values was compared with the planetary  Kp-index. Figure 4 presents a histogram of the distribution of occurrence of different values of the planetary  Kp-index (black) and  K-index for the Borok observatory calculated with the limit  K9=600 nT (grey) for 2005–2016.

From the histogram we can see that the number of cases with  K=0 at Borok observatory is much smaller than the number of cases when  Kp=0. With  K>1 the occurrence of the given  K value at Borok is always larger than the occurrence of the given  Kp, and with increasing  K this ratio also increases. The average value of  K and  aK indices for Borok (1.90 and 9.96 respectively) is noticeably larger than the corresponding values for the planetary indices  Kp and  Ap (1.60 and 8.41). The regression coefficient  Kp to  KBOX is equal to 1.066, and  Ap to  ABOX is equal to 1.02. All these data agree that the values of the  K9 limit for the Borok observatory should be greater. It was shown above that the best estimate for the necessary  K9 limit correction is the ratio of average values of the  aK-index. In this case, we get that the best correspondence between the Borok  K-index with the  Kp-index should be with the value of  K9=600×9.96/8.41=710 nT. To validate this new limit, the values of the  K-index were calculated for the Borok observatory with the accepted  K9=700 nT.
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  Figure 5 presents a histogram of the distribution of occurrence of different values of the planetary  Kp-index and  K-index for the Borok observatory, calculated with the limit value of  K9=700 nT for 2005–2016. The difference between the distribution of  KBOX and  Kp has decreased with  K in the range of 2–4, while with  K>5 it has practically disappeared. The difference between the average values of  K and  Kp (1.68 and 1.60, respectively) decreased, and the difference between the average values of  Ap and  aK (8.41 and 8.40, respectively) also practically disappeared. With a further increase in the  K9 limit, the difference between distributions and average values increases again. Thus, for the Borok observatory, the limit value of  K9=700 nT ensures the best correspondence of the Borok  K-index with the planetary  Kp-index.
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  A similar comparison has been made for several Russian observatories, for which representative series of continuous  K-index values are available. The results are given in Table 1. 

 4. K-Index Calculation at Russian Geomagnetic Observatories
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	Figure 6

  Table 1 was compiled by comparing the manually calculated  K-index (except for Borok observatory) and the planetary  Kp-index. At the same time, for all observatories, a much smaller occurrence of low values of the  K-index (0, 1, and sometimes 2) as compared with the  Kp-index was found. Sometimes this difference exceeded 100%. There could be 3 reasons for this difference: high level of industrial noise, incorrect choice of the  K9 limit or inaccurate calculation of the  Sr variation. Figure 6 shows the difference between the values of the Moscow observatory (MOS)  K-index calculated using one of the IAGA-approved programs, based on the FMI-method [Sucksdorff et al., 1991], and a simplified method based on the  Sq variation.

We can see that the error can reach 3 points and is not symmetric, the  KSq more often exceeds  KFMI, i.e., on average, the use of the simplified method leads to a systematic overestimation of the  K-index. The same result was obtained in [Anisimov et al., 2015; Mandrikova et al., 2012]. This effect, in general, is similar to the effect of the incorrect choice of the  K9 limit. The use of  Sq variations is inevitable when calculating the  K-index in real time, because all the IAGA-approved methods require data beyond the considered moment, which is not available in real time. However, the  K-index calculated using  Sq variations instead of  Sr cannot be considered as the classical Bartels  K-index and can only be used as a preliminary one. In IZMIRAN such indices are presented together with real time data (http://serv.izmiran.ru), but with a delay of 3–6 hours they are recalculated according to IAGA-approved methodology and only these indices are archived for further use (http://serv.izmir an.ru/out/KindMOS/Kind-mos.html).

The scales for calculating the  K-index for most Russian observatories were determined in the 1930–40s. Comparison of  K-indices calculated using these scales with the  Kp index shows that they need to be updated, and sometimes they are simply selected incorrectly. Thus, to ensure the comparability of the  K-index of Russian observatories with the world network, it is necessary to switch to the IAGA-approved standard methodology and update the  K9 limit. The indices calculated on the basis of  Sq variations should be considered as only preliminary. Since the application of methods based on the  Sq variation leads to the same effect as the incorrect choice of the  K9 limit, it is necessary to update this limit only using the digital  K-index data calculated in accordance with one of the IAGA-approved methods.  K-index data available in the World Data Center for Solar-Terrestrial Physics (http://www.wdcb.ru/stp/index.en.html) were calculated mainly from analog magnetogram data using the  Sq variation [Zabolotnaya, 2007] which is not suitable for this purpose.

 5. Conclusion

 K-index, introduced more than 80 years ago, is still a widely-used simple measure of geomagnetic activity. Modern data repositories for geomagnetism (such as the World Data Centers for Geomagnetism in Edinburgh or for Solar-Terrestrial Physics in Moscow) provide vast sets of data on  K-index obtained within a long period of time. This makes  K-index an indispensable instrument for retrospective analysis.

One of the pivotal aspects of creating an adequate  K-index at geomagnetic observatories is the correct choice of the  K9 limit value. This paper presents a feasible approach to correct determination of this value.

The  K9 limit for most of the Russian observatories has not been reconsidered for several decades. To ensure the comparability of the  K-index of Russian observatories with the international geomagnetic observational network, it is necessary to implement the IAGA standard methodology and update the value of the  K9 limit. The indices calculated on the basis of  Sq variations should be considered only as preliminary.
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Figure 1. Distribution histogram of occurrence of different  K-index values for 2005–2016 calculated with limit value of  K9=500 nT (black) and 600 nT (grey). Borok observatory (BOX).
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Figure 2. Correlation of  K-index values calculated with  K9 values equal to 500 and 600 nT.
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Figure 3. Correlation of  aK-index values calculated with  K9 values equal to 500 and 600 nT.
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Figure 4. Histogram of the distribution of occurrence of different values of the planetary  Kp-index (black) and  K-index for the Borok observatory calculated with the limit  K9=600 nT (grey) for 2005–2016.
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Figure 5. Histogram of the distribution of occurrence of different values of the planetary  Kp-index (black) and  K-index for the Borok observatory calculated with the limit  K9=700 nT (grey) for 2005–2016.
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Figure 6. Histogram of the difference in distribution of the Moscow observatory (MOS)  K-index, calculated using the  Sq variation and the FMI-method.
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Table 1. Adopted and Recommended  K9 Limits for Russian Geomagnetic Observatories

	Observatory 	 IAGA-code 	 Time interval 	 Adopted  K9 limit, nT 	 Recommended  K9 limit, nT 

	Arti 	 ARS 	 2001–2013 	 550 	 425 

	Borok 	 BOX 	 2005–2016 	 600 	 700 

	Novosibirsk 	 NVS 	 2005–2016 	 500 	 400 

	Paratunka 	 PET 	 2002–2013 	 450 	 380 

	Yakutsk 	 YAK 	 1979–1991 	 550 	 600 
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\abstract{Problem of area's zoning is very important and is one of the main problems of modern geographical science. Our point is to from a modern approach, based on the machine learning methods to provide zoning of any area. Key ideas of this methodology, that any distribution of factors that form any geographical system grouped around some clusters -- unique zones that represents specific nature conditions. Formed methodology based on several stages -- selection of data and objects for analysis, data normalization, assessment of predisposition of data for clustering, choosing the optimal number of clusters, clustering and validation of results. As an example, we tried to zone a surface layer of the Black Sea. We find that optimal number of unique zones is~3. Also, we find that the key driver of zone forming is a location of the rivers. Thus, we can say, that applying a machine learning approach in area's zoning tasks helps us increasing the quality of nature using and decision-making processes.}



\section{1. Introduction}



The problem of zoning has always been and will be the main problem of geographical science. In this context, region or zone is the main territorial system, which is always part of larger regional units. Based on this, zoning is the process of identifying and studying the objectively existing territorial structure, organization, and hierarchical subordination of physical and geographical complexes.

Zoning of any area includes several important goals

 [\itc{Vinokurov et al.,} \reflink{Vinokurov05}{2005};

\itc{Zaika} \reflink{Zaika14}{2014}]:



\begin{enumerate}

\item

Finding an existing physiography complexes;

\item

	mapping of physiography maps;

\item

	deep understanding of the complex composition;

\item

	research of processes and factors, that are forming complexes;

\item

	complex classification;

\item

Finding of any interactions between factors or complexes;

\item

	developing of physiography zoning methods.

\end{enumerate}



Thus, the main goal of this paper was to form a modern mathematical methodology, based on machine learning methods to provide zoning of any area.



In the last years problem of area's zoning and its methodology was tried to solve by several authors.



For example % G. N. Skrebets and S. M. Pavlova

\itc{Skrebets and Pavlova} [\reflink{Skrebets19}{2019}]

conducted a physical and geographical zoning of the Black Sea using correlation analysis. They used a mapping based on relationship between phytoplankton and natural factors, that limiting its distribution. Using this approach, they identified 5 regions that differ from each other in quantitative way, as well as in combination of relationships.



From a biological point of view, this problem was considered by

%V.~E.~Zaika

\itc{Zaika} [\reflink{Zaika14}{2014}].

He carried out biological zonation of the Black Sea and also described the main problems of its implementation. The principle of distinguishing different regions was based on quantitative analysis of the dominant species in different regions of the Black Sea.



The widespread use of physiographic zonation received in landscape ecology. %Yu.~I.~Vinokurov, Yu.~M.~Tsimbaleya and B.~A.~Krasnoyarova

\itc{Vinokurov et al.} [\reflink{Vinokurov05}{2005}]

proposed a methodology and implemented the physical and geographical zoning of Siberia. Based on various natural features, they identified more than 100 different regions with unique physical and geographical conditions.



%A. Tamaychuk

\itc{Tamaychuk} [\reflink{Tamaychuk17}{2017}]

in his paper tried analytical approach to zoning Black Sea area, based on main factors of spatial differentiation, distribution features of environmentally significant characteristics and modern ideas about the theory and methods of physiographic zoning. He divided area of the Black Sea into 3 water-provinces -- North-West moderate, North-East moderate and subtropical.



Mathematical approach was shown in %E. Sovga

\itc{Sovga et al.} [\reflink{Sovga05}{2005}]

work. They used depth, mean values of temperature and salinity, differences and features in flora and fauna as a factor. They divided area of the North-West part of the Black Sea into 4 groups -- West, Karkinitsky, Central and Kalamitsky.



V. Agostini

[\itc{Agostini et al.,} \reflink{Agostini15}{2015}]

in her paper tried to make a zoning of marine environment in St.~Kitts and Nevis. For her analysis, she used 37 spatial layers, that represent different factors and fully described functionality of the research area, that was divided into 3 major groups -- ``habitat'', ``species'' and ``human use''. As the result, she distinguished 4 major zones -- ``conservation'', ``transportation'', ``touristic'' and ``fishing''.



\itc{Petrov and Bobkov} [\reflink{Petrov17}{2017}]

tried to form the concept of hierarchical structure of large marine ecosystems in the Arctic shelf of Russia. Based on environmental variables, they distinguished 7 eco-regions of the Barents Sea -- South-Western, Pechora Sea, Central basin south, Central basin north, Novaya Zemlya shore, Svalbard Archipelago and Franz Josef Land Archipelago.



%Fyhr F., Nilsson A. and Sandman N. [

\itc{Fyhr et al.} [\reflink{Fyhr13}{2013}]

tried to review all of the modern concepts and tools for Ocean zoning. Based on their work, the most actual and commonly used tools are Atlantis, Cumulative Impacts Assessment Tool, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), Marine Protected Areas Decision Support Tool (Marine Map), Marxan and Marxan with Zones, NatureServe Vista and Zonation.





\section{2. Clustering as Physiographic Zoning Method}



\enlargethispage{-1pc}



Clustering is a task of dividing the entire dataset into separate groups of homogenous objects, that are similar to each other, but have distinct difference between this separate groups

[\itc{Aleshin and Malygin,} \reflink{Aleshin19}{2019}].

Clustering algorithms are divided in two groups -- hierarchical and iterative.



I. Hierarchical -- consistently build clusters from already found clusters.

\begin{enumerate}

\item

Agglomerative (unifying) -- start with individual elements, and then combine them;

\item

separation -- start with one cluster, and then -- divide them;

\end{enumerate}



 II. Non-hierarchical -- optimize a certain objective function.

\begin{enumerate}

\item

Graph theory algorithms;

\item

EM algorithm;

\item

 $K$-means algorithm ($k$-means clustering);

\item

fuzzy algorithms.

\end{enumerate}



Any clustering algorithm can be considered effective if the compactness hypothesis is satisfied

[\itc{Shi and Horvath,} \reflink{Shi06}{2006}].



Physiographic zoning using clustering method is carried out in several stages:

\begin{enumerate}

\item

Selection of data and objects for analysis;

\item

data normalization;

\item

assessment of predisposition of data for clustering;

\item

choosing the optimal number of clusters;

\item

clustering and validation of results.

\end{enumerate}



Formally, almost all clustering tasks come down to this form. Let  $X$ be the set of objects, $Y$ is the set of numbers (names, labels) of clusters. The distance function between objects is specified as

$\rho(x,x\prime)$

[\itc{Collins et al.,} \reflink{Collins02}{2002}].

There is a finite training set of objects $X^m={x_1,...,x_n}\in X$. So, the main goal of clustering is to divide dataset into several disjoint subsets. These subsets called clusters and consist from objects, that are closed to the

$\rho$-metric. Objects from different clusters were significantly different. For every object $x_i\in X^m$ assigned the number of cluster $y_i$

[\itc{Marron et al.,} \reflink{Marron14}{2014}].



\subsection{2.1. Data Normalization}



Data normalization is one of the feature transformation operations that is performed during their generation at the data preparation stage. In case of machine learning, normalization is a procedure for preprocessing input information (training, test and validation samples, as well as real data), in which the values of the attributes in the input vector are reduced to a certain specified range of values, for example: $[0...1]$ or $[-1...1]$.



The importance of data normalization comes from the nature of algorithms and models in machine learning. The values of raw data can vary in a very wide range and differ from each other by several orders

[\itc{Rybkina et al.,} \reflink{Rybkina18}{2018}].

The work of such machine learning models like neural networks or Kohonen self-organizing maps with not normalized data will be incorrect -- difference between attribute's values can cause instability of the model, that will lead to worth learning results and slowing the modelling process. Also, some parametric machine learning models require symmetric and unimodal data distribution. After normalization, all the numerical values of the input attributes will be reduced to the same amount -- a certain narrow range

[\itc{Criminisi et al.,} \reflink{Criminisi12}{2012}]. %%% ??? +



There are many ways to normalize feature values in order to scale them to a single range and use them in various machine learning models. Depending on the function used, they can be divided into two large groups: linear and non-linear

[\itc{Tealab et al.,} \reflink{Tealab17}{2017}].

With nonlinear normalization, the calculated ratios use the functions of the logistic sigmoid or hyperbolic tangent. In linear normalization, the change of variables is carried out proportionally, according to a linear law.



The most common methods for data normalization are:



Minimax -- linear data transformation in the range $[0..1]$, where the minimum and maximum scalable values correspond to 0 and 1, respectively:



\begin{eqnarray*}    % \begin{equation}\label{1}

X_{\mathrm{norm}}=\frac{X-X_{\min}}{X_{\max}-X_{\min}}

\end{eqnarray*}

$Z$-scaling based on the mean and standard deviation: dividing the difference between the variable and the it means by the standard deviation:



 \begin{eqnarray*}      % \begin{equation}\label{2}

 z=\frac{x-\mu}{\sigma}

\end{eqnarray*}

Decimal scaling -- performed by removing the decimal separator of the variable value

[\itc{Seber and Lee,} \reflink{Seber03}{2003}].



In practice, minimax and $Z$-scaling have similar areas of applicability and are often interchangeable. However, in calculating the distances between points or vectors in most cases, $Z$-scaling is used, while minimax is useful for visualization.



\subsection{2.2. Assessment of Predisposition of Data for Clustering}



One of the most common problem of unsupervised machine learning is that clustering will form groups, even if the analyzed dataset is a completely random structure. That's why the first validation task that should be applied even before clustering is to assess the overall predisposition of the available data to cluster tendency

[\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



There are two common indicators, that can show us cluster tendency -- Hopkins statistics and Visual Assessment of cluster Tendency or ``VAT diagram''.



To calculate Hopkins statistics, we need to create B pseudo-datasets, randomly generated based on the distribution with the same standard deviation as the original dataset. For each observation $i$ from $n$, the average distance to $k$ nearest neighbors is calculated as follows:

$w_i$ between real observations and $q_i$ between generated observations and their closest real neighbors

[\itc{Keller et al.,} \reflink{Keller85}{1985};

\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].

Then the Hopkins statistics calculates as follows:



 \begin{eqnarray*}

H_{\mathrm{ind}} = H_{\mathrm{ind}}=\frac{\sum_{n}w_i}{\sum_{n}q_i+\sum_{n}w_i}

\end{eqnarray*}

If $H_{\mathrm{ind}}>0.5$,  then it will correspond to the null hypothesis that $q_i$ and $w_i$ are similar and values are distributed randomly and uniformly. If  $H_{\mathrm{ind}} < 0.25$ this indicates that a dataset has a tendency to data grouping.



For visual assessment of clustering tendency, the best way is to using VAT diagram. VAT algorithm consists of:



\begin{enumerate}

\item

Compute the dissimilarity matrix between the objects in the data set using the Euclidean distance measure;

\item

reorder the dissimilarity matrix so that similar objects are close to one another. This process creates an ordered dissimilarity matrix;

\item

the ordered dissimilarity matrix is displayed as an ordered dissimilarity image, which is the visual output of VAT.

\end{enumerate}



The VAT detects the clustering tendency in a visual form by counting the number of square shaped dark blocks along the diagonal in a VAT image [\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



\subsection{2.3. Choosing the Optimal Number of Clusters}



At this moment there's two main ways to choose an optimal number of clusters -- ``elbow'' method and using of gap statistics

[\itc{Chapelle et al.,} \reflink{Chapelle06}{2006}].



The ``elbow'' method -- considered the pattern of variation in the dispersion of $W_{\mathrm{total}}$  with increasing in number of groups  $k$

[\itc{Tomar et al.,} \reflink{Tomar18}{2018}].

Combining all of the founded  observations in one group, we'll have the biggest intraclass dispersion, that will decrease to 0 when $k\rightarrow n$.

The point, when this decreasing of dispersion will be slowing down, called ``elbow''

[\itc{Seber and Lee,} \reflink{Seber03}{2003};

\itc{Thiery et al.,} \reflink{Thiery06}{2006}].



An alternative to the ``elbow'' method is using gap statistics, which are generated based on resampling and Monte-Carlo simulation processes. For example, let $E_n^\ast{\log(W_k^\ast)}$ denotes the valuation of average dispersion $W_k^\ast$, obtained by bootstrap method, when $k$ clusters are formed by several random objects $f$ from the original dataset of $n$ size. Then gap statistics will be calculated as follows:



 \begin{eqnarray*}          % \begin{equation}\label{4}

\mathrm{Gap}_n(k)=E_n^\ast{\log(W_k^\ast)}-\log(W_k)

\end{eqnarray*}

 $\mathrm{Gap}_n(k)$ determines the deviation of the observed dispersion $W_n$ from its expected value, if the original data formed only one cluster.



\subsection{2.4. Validation of Clustering Results}



Currently, there are several ways to validate the results of clustering:



\begin{enumerate}

\item

 External validation -- comparing the results of cluster analysis with already known validation dataset;

\item

relative validation -- evaluating the structure of formed clusters by changing the algorithm parameters;

\item

internal validation -- obtaining internal information of clustering process;

\item

assessment of the clustering stability using resampling.

\end{enumerate}



The most widespread indexes are silhouette index and Calinski-Harabasz index [\itc{Sivogolovko and Thalheim,} \reflink{Sivogolovko13}{2013}].



One of the approaches to validate the results of clustering is the Calinski-Harabasz index.



Let ${\overline{d}}^2$  is the mean square distance between elements in clustering variety and ${\overline{d}}_{c_i}^2$ -- mean square distance between elements in cluster $c_i$. Then the distance inside groups will be:



 \begin{eqnarray*}   % \begin{equation}\label{5}

\mathrm{WGSS} = \frac{1}{2}\sum_{i=1}^{c}(n_{c_i}-1){\overline{d}}_{c_i}^2

\end{eqnarray*}

and the distance between groups will be:



\begin{eqnarray*} % \begin{equation}\label{6}

\mathrm{BGSS} = \frac{1}{2}\left(\left(c-1\right)

{\overline{d}}^2+\left(N-c\right)A_c\right)

\end{eqnarray*}

where $a_c = A_c/\overline{d}^2$ -- is weighted mean difference of distances between cluster centers and a mutual variety center. Then the Calinski-Harabasz index will be:



\begin{eqnarray*}

\mathrm{VRC} = \frac{\mathrm{BGSS}/(c-1)}{\mathrm{WGSS}/(N-c)} =

\end{eqnarray*}

 \begin{eqnarray*}

 \frac{{\overline{d}}^2+ [(N-c)/(c-1)]A_c}{{\overline{d}}^2-A_c} =

\end{eqnarray*}

 \begin{eqnarray*}  %  \begin{equation}\label{7}

 \frac{1+[(N-c)/(c-1)]a_c}{1-a_c}

\end{eqnarray*}

where $a_c=A_c/\overline{d}^2$. We can see, that if the all distances between points are similar, then

$a_c=0$ and $\mathrm{VRC} = 1$. $a_c=1$

  characterize the prefect clustering. The maximum value of  corresponds to optimal cluster's structure.



Another approach to validate the clustering results is using the silhouette index. Its values shows the degree of similarity between object and cluster that he belongs to, compared to another clusters

[\itc{Shi and Horvath,} \reflink{Shi06}{2006};

\itc{Soliman et al.,} \reflink{Soliman17}{2017}].



Silhouette of every cluster estimates as follows: let object $x_j$ corresponds to cluster $c_p$. Denote the mean distance from this object to other objects from this cluster  $c_p$ as $a_{pj}$  and the mean distance from this object $x_j$ to objects from another cluster as

$c_q,q\ \neq\ p $ as $d_{q,j}$.

Let $b_{pj} = \min_{q\neq p}d_{qj}$. This value means the measure of dissimilarity of single object with objects from nearest cluster. Thus, the silhouette of every single element of cluster calculates as:



 \begin{eqnarray*}   % \begin{equation}\label{8}

S_{x_j}=\frac{b_{pj}-a_{pj}}{\max(a_{pj},b_{pj})}

\end{eqnarray*}

The highest values of $S_{x_j}$ corresponds to better affiliation of element  $x_j$

to cluster $p$.  The evaluation of all cluster structure provided by averaging the value by elements:



 \begin{eqnarray*}   %  \begin{equation}\label{9}

\mathrm{SWC} = \frac{1}{N}\sum_{j=1}^{N}S_{x_j}

\end{eqnarray*}

Better clustering characterized by bigger values of , that achieved when the distance inside cluster $a_{pj}$ is small and the distance between objects from neighboring clusters $b_{pj}$ is big.



\section{3. Black Sea Surface Physiographic Zoning}

\subsection{3.1. Research Area}



The Black Sea is an inland sea, that belongs to the basin of the Atlantic Ocean. Its maximum depth reaches the mark of 2258 meters

(\figref{1})

[\itc{Barratt,} \reflink{Barratt93}{1993}].

The total area of the Black Sea is 420,325~km$^2$, and with the Sea of Azov -- 462,000~km$^2$

[\itc{Murray,} \reflink{Murray05}{2005}].



The average seasonal cycle of geostrophic circulation of the Black Sea [\itc{Ivanov and Belokopytov,} \reflink{Ivanov11}{2011}]:



\begin{itemize}

\item

	From January to March -- a single cyclonic rotation with a center in the eastern part of the sea, the western circulation is weakly expressed;

\item

from April to May -- a single cyclonic rotation with a center in the western part of the sea, the eastern cycle is weakly expressed;

\item

from June to July -- two cycles, the western more intense;

\item

from August to September -- two cycles, the eastern one is more intense;

\item

from October to December -- two cycles of equal intensity.

\end{itemize}



About 80\%

of the river flow is concentrated in the northwestern part of the Black Sea. The Caucasian rivers contribute about 13\%

of the water balance, while the runoff from Turkeys rivers is about 7\%

[\itc{Ghervas} \reflink{Ghervas17}{2017}].  % Ghervas.

The contribution of the Crimean rivers a is insignificant

[\itc{Belokopytov and Shokurova,} \reflink{Belokopytov05}{2005}].



The biggest river, that flows into the Black Sea is Danube. The Danube usually brings about 203~km$^3$ of freshwater into North-Western part of the Black Sea, decreasing the level of salinity there. Another big river, that flows into Black Sea is Dnieper from Ukrainian part and Rioni from Georgian

[\itc{Ozsoy and Unluata,} \reflink{Ozsoy97}{1997}].



\begin{figure*}[t]                        %  Fig  1

\figurewidth{35pc}

\setimage{}{}{35pc}{}{2020es000707-f01}

\shortcaption{Bathymetric map of the Black Sea.}

\end{figure*}



\subsection{3.2. Data}



We used the monthly averaged data from Copernicus Marine Environmental Monitoring Service (CMEMS) -- Black Sea Reanalysis, which are based on 5 components:



\def\bottomfraction{.8}

\def\textfraction{.15}



\begin{table}[b]                                   % Table 1

\tablewidth{20pc}

\caption{Estimated Data Accuracy Results for Temperature and

Salinity. From Left Side in Each Row -- for 1995--2015 Data.

From Right -- for 2005--2015} \vspace{5pt}

\begin{tabular}

{@{}l@{\hspace{9pt}}

c@{\hspace{18pt}}

c@{}}

\hline

\\ [-7pt]

Feature & BIAS v4 & DMS v4 \\

 [7pt]  \hline   \\ [-4pt]

SST (\deg C)          & $-0.07/-0.07$ & 0.58/0.59 \\

T (\deg C) 0--100 m   & $-0.02/0.025$ & 0.87/0.74 \\

T (\deg C) 100--300 m & $-0.03/-0.003$ & 0.15/0.09 \\

T (\deg C) 300--800 m & $-0.02/-0.02$ & 0.11/0.05 \\

S (psu) 0--100 m      & $-0.014/0.002$ & 0.33/0.26 \\

S (psu) 100--300 m    & $-0.006/0.009$ & 0.19/0.15 \\

S (psu) 300--800 m    & $-0.005/-0.002$ & 0.05/0.03\\  [7pt]

\hline

\end{tabular}

\end{table}



\begin{enumerate}

\item

	Ocean model -- Hydrodynamic model, which is a part of the NEMO (Nucleus for European Modelling of the Ocean) project;

\item

	scheme of data assimilation (OceanVar) for temperature and salinity profiles, satellite data for sea surface temperature, sea level anomalies etc.;

\item

	assimilated data -- in-situ data for environmental variables;

\item

	recovery scheme for environmental variables;

\item

basic large-scale adjustments.

\end{enumerate}





Data from this model have a high level of correlation with in-situ data, that increasing with depth. For example, the accuracy of temperatures spatial distribution in the Black Sea at depth of 30~m

about $\pm{1.5}$\deg C, at the depth of 70~m it decreases to

$\pm{0.3}$\deg C and at the depth of 1100~m is about

$\pm{0.04}$\deg C

(\tabref{1}).    %Table 1).



The quality of the model data, as well as the model itself, improve with increasing of in-situ observations numbers.



For Black Sea surface physiographic zoning we used 6 environmental parameters -- sea surface temperature, sea surface salinity, dissolved oxygen level, PO$_4$ and NO$_3$ content and primary production level.



\subsection{3.3. Results}



To understand, does dataset has a tendency to form clusters, we calculated a Hopkins index using the R-package ``clustertend''. It was equal to 0.0194, that means that this dataset can form clusters.



To estimate an optimal number of clusters, we used the R-package ``factoextra''. Results shown in

\figref{2}.    % figure 2.



\begin{figure}[t]                        %   Fig  2

\figurewidth{20pc}

\setimage{}{}{20pc}{}{2020es000707-f02}

\caption{Determining an optimal number of $k$ by elbow-method.}

\end{figure}



As we can see at the

\figref{2},

the elbow of our curve is located at 3, thus we can distinguish 3 completely different zones in the surface waters of the Black Sea

(\figref{3}, \figref{4}).

Allocation of this zones due equally to all of analyzed factors, except dissolved oxygen.



\begin{figure*}[t]                        %   Fig  3

\figurewidth{35pc}

\setimage{}{}{41pc}{}{2020es000707-f03}

\caption{Seasonal zoning of the Black Sea.%

{\bf A} -- Winter, {\bf B} -- Spring, {\bf C} -- Summer, {\bf D} -- Autumn.}

\end{figure*}



Based on statistical analysis all of these factors divided in two groups. First -- phosphates concentration, primary production and chlorophyll-$\alpha$, which are derivatives from each other -- the amount of phosphates impacts on amount of primary production and amount of primary production impacts on amount of produced chlorophyll-$\alpha$. Second are temperature, salinity and nitrates concentration.



Studying water objects, it's important to know a seasonal variability of zones, because of its very high change capability in time. Comparing with land, water systems aren't stable for long period of time and spatial distribution of factors can vary from season to season.



Generally, as we can see in figure, main reasons of zoning pattern forming are quantitative and qualitative characteristics on flows.



In winter season, there is a clear divide of the Black Sea from west to east. A significant role in this process is played by the interaction of the Black Sea with the Sea of Marmara, river flows in the northwest of the Black Sea and in the Caucasus and, in some cases, areas near the Southern coast of Crimea and the Kerch Peninsula due to the activity of currents from the Sea of Azov.



In spring season, the divide of the Black Sea occurs from north to south. In this case, a significant impact on this process is exerted by the significant flow of such rivers as the Dniester, Danube and Dnieper in the north-west of the Black Sea and the influx of water from the Sea of Marmara. Due to the interaction between two water masses radically different in their characteristics, it forms an intermediate zone between them, covering an area from the Kerch Strait to the Danube Delta.



In the summer, due to the nature of the internal currents in the Black Sea and changes in the volume of river flow, more saline water from the Sea of Marmara reaches the Danube. In spatial terms, the pattern of zones distribution in the Black Sea is similar to the winter one, in which they are located from east to west. The formation of the intermediate second zone is most likely due to the interaction with more fresh and cold water coming from the Sea of Azov.



In autumn, the formation of more fresh and colder waters off the coast of Turkey is observed, which is due to the significant flow of the rivers of the Turkish coast. The distribution pattern is more similar to the spring one, with significantly increased in size zone~1.



Annual zoning of the Black Sea is presented on  figref{4}.



\subsubsection{Zone 1.}

 Located in the North-West part of the Black Sea. Flows from Danube, Dniester, Dnieper and Southern Bug completely equal of 3/4 of a total flow into the Black Sea. Dominated northern and north-western winds helps in spreading of matters, endured by rivers. The main feature of this part of the sea is an active interaction of fresh water from rivers with salty water from south of the Black Sea. Near the shore water salinity reaches values about $7-8 \pm$. Temperature of water surface, as a salinity, increasing from shore to open sea. Temperature differences reaches

 1.5--2.0\deg C. Bioproductivity of this zone is quite high, mainly cause of active flowing rivers matter and\linebreak

fresh water. But local hydrophysical and hydrochemical

conditions condition high variability of bioproductivity with

fishkills.



\subsubsection{Zone 2.}

 Basically, forming of this zone determined by interactions between 1-st and 3-rd zones, where as a results of Black Sea

 currents and flows from big rivers, cold fresh water from the coastal areas mixed up with more cold and salty water from

 central part of the Black Sea. Located in the north-west part of the Black Sea, near the Crimean-Caucasus shore of Russia,

 Georgian and Turkey coasts. Biggest rivers here are Rioni, Tuapse, Kizilirmak, Yesilirmak and Inguri. Like the zone~1, location

 of the zone 2 is due to the flows from rivers. But cause of lower levels of flow amount, compared with the zone 1, their

 impact  on water of the Black Sea is quite lower, but noticeable. Values of salinity here doesn't differ from the central part

 ($1-2 \pm$ fresher), same as a temperature.



\begin{figure*}[t]                          %  Fig  4
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\setimage{}{}{35pc}{}{2020es000707-f04}

\shortcaption{Physiography zoning of the Black Sea.}

\end{figure*}



\subsubsection{Zone 3.}

 Natural conditions of this zone are a common to the Black Sea. The area of this zone is the biggest. Located in the south and central part of the Black Sea and near the Kerch Strait. Salinity here is a quite high -- $19-20 \pm $, and reaches $24 \pm $ near the Bosporus Strait. The impact of the Sea of Azov is quite low, due to specificity of Azov currents. Amount of phosphates and nitrates is low due to lack of any big rivers, which are the main sources of their presence in the sea water. As a result, concentrations of chlorophyll-$\alpha$ is quite low too.



\section{4. Conclusions}



Thus, the methodological approach, showed in this paper, helps us to use it fully in zoning tasks to provide distinguishing from them completely different areas, that aren't similar. As we can see, the main advantages of this approach are lack of subjectivity that is inherent to humans, high level of analysis accuracy, possibility of constant model's modification by adding new {\itshape in-situ} data or by modifying the algorithm itself. Also, it should be noted, that the indisputable advantage of this approach is the ability to use it in any kind of territory, both in size and in properties.



As we talk about disadvantages of this approach, we should note a strong dependency from input data quality and data normalization, which in some cases can lead to significant distortion in the analysis results. The same we can say about data size. With significant amount of data, it may be difficult to conduct the research, which leads to completely change the used algorithm or to significant reduction in data size and, as a result, to simplification of the model and distortion of the real results. Generally, we should note, that using of this approach is justified in most cases, but the need of improvement and further optimization of it doesn't disappear.



Obtained results helps us to understand that applying of this

approach can helps us to go away from analytical and empirical

zoning approaches to have a math basis, uniformity of

calculations and process automatization. Conducted as an

example of this approach application, Black Sea physiographic

zoning generally is quite similar with previous works. It was

determined, that the most optimal number of the dissimilar

groups, based on analyzed factors is 3. Generally, their

spatial location based on places where rivers flows into the

Black Sea, and as a result more comfortable for different flora

and fauna. For example, the conditions, that formed in the

second area is quite comfortable for spawning of many

commercial fishes, Like {\itshape Liza haematocheilus},

{\itshape Engraulis encragicolus}, {\itshape Liza aurata},

 {\itshape Mugil cephalus}, etc. Thus, applying a machine learning approach in area's zoning tasks helps us to increase the quality of nature using and decision-making process.
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