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Abstract. This paper is dedicated to the
analysis and comparison of various
mathematical toolkits, applicable to the
assessment of sustainability/vulnerability of
distributed sociotechnical systems (DSTS) to
natural disasters. A “black box”-based general
description of the DSTS operation is given.
This description is used for consideration of
capabilities and limitations of mathematical
models of DSTS, known from the operations
research and knowledge engineering areas. All
tools mentioned are compared by representation
of DSTS operational logic, impacts on DSTS,
and criteria for recognition of a system’s
sustainability. Algorithmic and implementation
issues are discussed. Conclusions about
applicability of the tools to the problem of
sustainability/vulnerability of DSTS and possible
future developments are presented.
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1. Introduction

One of the most pressing and at the same time com-
plicated problems of applied system analysis today is
assessment of sustainability of modern distributed so-
ciotechnical systems (DSTS) to various destructive im-
pacts – first of all, natural disasters (ND) [Dubois and
Gvishiani, 1998; Gvishiani and Dubois, 2002; Gvishiani
et al., 2008, 2014, 2016].

By digitization, robotization and networking,
DSTS become more and more “technical”, intercon-
nected, and, thus, vulnerable to even local malfunc-
tions of devices entering these systems, as well as to
loss of some relatively small parts (bulks) of resources
necessary for their operation. Every such malfunction
or loss, by multiple chain, or cascading, effects, may
lead to serious negative consequences, which may occur
far beyond the place (area) of initial technical accident
launched by ND [Roberts, 1982].

So it is extremely important to assess and, even more
useful, to predict the afore-mentioned consequences by
application of models of DSTS along with data describ-
ing their current state.

In this context, a choice of basic mathematical toolkit
for the assessment of DSTS sustainability/vulnerability



to real or possible destructive impacts is a key fac-
tor defining future success or failure of the developed
model’s application to the existing or designed systems.

The problem described above is not absolutely new,
and, in different variations, it was studied in many
known works [Adams and Jeanrenard, 2013; Bakari,
2017; Black and Cherrier, 2010; Geissdoerfer, 2017;
Le Billon, 2005; Pearce, 2012; Roberts, 2011; Sheker,
2015; Waite, 2013; Wright, 2004]. This paper is dedi-
cated to the analysis and comparison of mathematical
toolkits used in previous publications concerning the
problem of interest.

To compare capabilities and limitations of various
toolkits we shall begin with introducing in Section 2
some generalized intermediate description of DSTS,
based on a “black box” representation of their elemen-
tary operational units (devices, robots, human-controlled
manufacturing or transporting subsystems, etc.). This
representation will be used for consideration of differ-
ent approaches to DSTS modeling, based on scheduling
theory (Section 3), Petri nets (PN, Section 4), network
models and mathematical programming (Section 5),
logic programming (LoP), deductive data bases (DDB),
constraint programming (CP), and multiagent systems
(MAS, Section 6), as well as on multiset grammars



(MG, Section 7). Final comparison will be made in
Section 8, where also some conclusions about further
development will be presented.

2. “Black Box” Description of Distributed

Sociotechnical Systems

A digital economy (DE) paradigm [Huws, 2015; The
New Digital Economy, 2011; Tapscoft, 1997] simplifies
and unifies representation of all possible sociotechnical
systems, which, independently of their functions, may
be naturally described in the network-centric frame-
work. According to modern views, accumulated, for
example, in the Industry 4.0 concept [Herman et al.,
2016; Ustundag and Cevicsan, 2017], any human so-
ciety operates as a set of customers (human beings)
connected by common Internet-based information in-
frastructure with a set of various devices, forming to-
gether industrial, transportation, energy, life support,
and banking and finance infrastructures (Figure 1). This
set of devices, usually called Internet of Things (or if
it is considered mainly a manufacturing process, Indus-
trial Internet of Things), provides for the creation of the
items (products and resources) ordered by customers,
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and their relocation to the places of their usage. The
process of item creation in the general case includes
multiple operations, executed by various manufactur-
ing devices, located more or less far from one another,
and also transportation of the items and their elements
(spare parts) from places where they are produced to
places where they are used. In the most advanced
cases, where industrial infrastructure implements ad-
ditive technologies of manufacturing, e.g., 3D-printing,
the afore-mentioned logistics is the simplest and in-
cludes transportation of necessary amounts of powders
from their storage to 3D-printers, and, after the manu-
facturing cycle is finished, transportation of the printed
items to the customers. In parallel with relocation of
material objects, payments for the works done are per-
formed in electronic form by application of banking and
finance infrastructure capabilities.

Operation of all devices, including networking hard-
ware, as well as of acting personnel, is based on the con-
sumption of electrical energy produced by power plants
and transferred by electrical grids, forming an energy
infrastructure that is often considered as a whole with
fuel storages, pipelines, as well as with fuel stations.
Relocation of products and persons is performed by
various vehicles upon rail-roads, highways, water and



air routes, and all these vehicles utilize fuels and/or
electrical energy (the last in the case of electric vehicle
transport).

Life support infrastructure includes technical objects,
providing people residence, food, water supply and other
services (including emergency, healthcare, etc.) neces-
sary for their existence and functionality.

The described process of the DSTS operation is highly
decentralized, and the interaction between devices is
organized in a peer-to-peer mode via information in-
frastructure. Formal description of such complicated
systems is possible if there is some unified representa-
tion of the main elements and their functional inter-
connections and interdependencies.

Let us begin with the simplest case, when the so-
ciotechnical system (STS) is local. Such system may
be explicated as a set of devices (also called lower tech-
nological base, TB).

Each such device may be represented as a “black
box” B with k inputs and l outputs (Figure 2a). We
shall mark the i -th input by ai , which ai is the name
of the resource type, and mark by ni the amount (vol-
ume, quantity) of such resource elementary units (or
units of measurement). This means ni units of re-
source a1, ... , nk units of resource ak are required to



Figure 2. “Black box” explication of local so-
ciotechnical system.



device B for creation (producing, manufacturing) of n′1
units of resource a′1, ... , n′l units or resource a′l . Also
there exists some initial collection of resources I , called
the resource base (RB) of STS, containing m1 units of
resource a

′′

1, ... , mN units of resource a
′′

n. The created
resources enter the resource base and may be extracted
from RB by any device, that may start an operation cy-
cle at any moment, when RB contains all resources, de-
fined by its inputs. Let us underline, that STS operates
in the presumption, that there are no pauses in every
device operation: as soon as all necessary resources are
available, the next operation cycle of device begins (of
course, if two or more devices need the some resources,
there are may be various ways of STS operation, dif-
fering by sequence of competing devices activation).

By locality of STS, resource exchanges between RB
and devices are presumed immediate. Process of STS
operation is driven by the flow of input orders (Fig-
ure 2b). Each such order defines a collection of re-
sources, i.e., n̄1 units of resource ā1, ... , n̄p units of
resource āp, which must be created by the system.

As may be seen from Figure 2b, an input order may
be also represented as the same “black box” with in-
puts, corresponding to an order-defined resource col-



lection, and an output, being order identifier.
It is essential, that there are no firm (rigid) links be-

tween devices for resource exchange; instead of such
links a more general and flexible scheme can be imple-
mented, providing the afore-mentioned exchange via
the resource base.

Clearly, every operation cycle of any device B is
executed during some time interval. Due to the uni-
fied representation this information is simply implanted
to every “black box” as specific resource ∆t, which
amount n is duration of the mentioned interval, mea-
sured in the fixed unit ∆t (second, minute etc.).

The only substantial difference between resource ∆t
and other resources is that ∆t is not fully additive,
because all devices, entering STS, may operate in par-
allel; time is additive only in relation to one device,
i.e., to produce n items, each created during m time
units ∆t, the device would operate for n ·m time units
∆t. But if there are two or more such devices they
would produce the afore-mentioned n items during time
l ·∆t < n·m·∆t due to parallel operation of the devices
and rational distribution of jobs among them.

Time may also enter an order in such a way that
along with resource amounts required for the customer,
it may contain time interval n · ∆t as the precise du-



ration of order completion or upper bound (“no more
than n · ∆t”) of this duration. Along with these two
cases there may be a third one, where n ·∆t is declared
by the customer as the minimum of all possible values
corresponding to various possible ways of completing
an order. Also, a customer may include into the order
amounts of some resources available while the order is
completed, so there may be spent no more than the
declared amount of every listed resource, or even the
minimum of all possible values. These restrictions may
be established by the customer as well as by producing
STS, or as a result of their mutual agreement.

As may be seen from this short description, an order
declared by the customer may be represented as a cou-
ple < G , R >, where G is list of resources being the
goal of the request, while R is a list of restrictions on
amounts of resources and time available for the achieve-
ment of the goal. One of the most common resources
(spent and restricted) is money.

Let us emphasize once more that time restrictions
may be various; they may define that order may be
completed:

1. in the minimal timeframe;

2. no longer than some fixed value n ·∆t;



3. precisely in fixed timeframe n ·∆t;

4. a combination of 1 and 2, i.e. minimal timeframe
of all, being no longer than n ·∆t.

To achieve the goal represented by couple < G , R >,
there must be created a plan, or schedule, including
operations synchronized by time and resources, exe-
cuted by devices (“black boxes”) entering the STS.
Every such operation begins from extraction from the
resource base the necessary amounts of resources, and
finishes by the addition of a created object to the RB.

It is quite evident that creation of such a schedule is a
sophisticated combinatorial problem, and development
of algorithms providing efficient search of solutions of
this problem is one of the most important tasks that
must be carried out to create a rational digital economy.

For the above purpose there would be a special de-
vice – an intelligent component of STS, – creating
schedules of order completion. This component will
be called an STS scheduler (STS-S), and a similar ab-
breviation will be used for distributed STS schedulers
(DSTS-S).

Production of an STS-S, i.e., a schedule, may be rep-
resented in a form similar to a Gantt chart (Figure 3),
which contains K parallel axes, each corresponding to



Figure 3. STS schedule.

its own device (“black box”) Bi . The time interval
[t ij , t ij + ∆i ], marked by start and finish points on the
i -th axis, represents one operation cycle of Bi , which,
let us recall, begins from the extraction of necessary
amounts of resources from the resource base at mo-
ment t ij , their processing, creation of output object,

and its transfer to the RB at moment t ij + ∆i . All such
operations are synchronized by a unitary time scale for
all K times axes, and an operation cycle of Bi may start
only in that time interval when the resource base con-
tains all amounts of resources defined by Bi inputs, i.e.,
as soon as RB contains such amounts. In the general
case various devices may compete for resources; and



the start of one of them initiates delay of the others.
Construction of a schedule providing order completion
requires massive search in the solutions space, and var-
ious algorithms, implemented by corresponding STS-S,
may differ by computational complexity of such search.

Let us consider more general cases concerning local
STS application and operation.

“The closest” generalization of the described area is
the same STS, which provides completion of the flow
of orders in such a way that each next order may enter
STS during processing of previous orders. The simplest
but worst discipline of such flow handling is sequential,
i.e., when STS begins to execute operations providing
the next order completion after the previous order is
already completed. However, to achieve maximal pro-
ductivity, STS-S would provide maximal parallelization
of sequentially incoming orders: operations providing
completion of every incoming order would begin as soon
as possible, in parallel with operations already executed
to complete earlier orders. Thus STS-S operates upon
flow of orders processed in the parallel mode.

There may be two approaches to such an STS sched-
ule. The first is based on the presumption that sched-
ules providing completion of previous orders are not
corrected during creation of a schedule providing com-



pletion of the next entering order. The second approach
is based on the possibility of correction of the already
executed schedules while creation of the next one takes
place. Of course, possible correction would not cause
any previous order failure, which would shift this order
terms out of its deadline.

Further generalization concerns the set of cases where
STS during their operation may become the object of
a natural hazard that destroys some resources and de-
vices of the system. In such situations the task of
STS-S is to reschedule system operation according to
the new state of the system, i.e., its reduced resource
base and technological capabilities. Rescheduling must
be performed in such a way that all orders would be
completed with minimal shift of terms and minimal
amounts of spent resources or, if possible, without shift
or spent resources.

A more complicated case, associated with the de-
structive impacts, addresses chain (or cascading) ef-
fects. Such effects emerge in propagation and multipli-
cation of failures (damage) without additional impacts
from the external sources, but only by reason of the
existing internal interconnections between the affected
STS subsystems (elements); the destruction (malfunc-
tion) of such an interconnection causes immediate or



delayed destruction (malfunction) of its neighboring (in
space and/or functional sense) elements. For exam-
ple, failure of an electrical power plant causes failure
of electricity-driven railway transport as well as of fuel
stations that provide refueling of automotive transport,
even if there is no direct impact on the transportation
vehicles; as a consequence, all ground transport loses
an ability to relocate resources and products necessary
for industrial facilities that produce goods and food for
human beings. These industrial facilities also fail, and
so on.

The objective of all considered STS-S applications
is the creation of schedules providing completion of all
orders entering STS. However, in some circumstances
(for example, after the afore-mentioned ND destructive
impacts), there may also be a negative result when
some of the orders can not be completed under the
current resource and time restrictions.

So one more regime of an STS-S application would
provide assessment as to what amounts of resources
and devices would be produced (acquired) and added
(included) to STS to complete the already processed
orders. Furthermore, it is extremely important to know
what time and resources are necessary to restore STS
technological capabilities and resource base, because



resources, which must be added after the destructive
impact, must be, in turn, produced (manufactured).
Thus, impacts generate an additional flow of orders,
providing restoration of the affected STS through its
part that had remained in the normal state, or/and by
some external sociotechnical systems.

Let us also note that, as everywhere in system anal-
ysis, there may be two variants of STS – closed and
open. Closed STS operate upon a resource base that
is not restored from the outside environment (or meta-
system); the last generates only “destructive” impacts.
Open STS, by contrast, also provides RB restoration.
However, this case may be reduced to the previous one
by considering restoration as a “constructive” impact,
which “affects” STS by adding some resources to RB
instead of eliminating them. Thus, we unify reschedul-
ing initiated by RB restoration through the already con-
sidered case of the “destructive” impact.

However, in the general case there may be situations,
where neither the STS’ own capabilities nor the meta-
system’s possible help can provide for order completion.
That is why another necessary regime of an STS-S ap-
plication, concerning STS in an affected state, as well
as in its normal state, is the assessment of what part of
the order may be completed given available resources.



This function is extremely useful if there is no oppor-
tunity for the restoration of RB and the destroyed part
of the technological capabilities of STS.

All that we have said above concerns local STS.
Let us consider now the general case – a distributed

sociotechnical system. Formalizing this case, we shall
follow the “Occam’s razor” ideology and use previous
constructions and entities, extending them by a mini-
mal number of additional items.

Namely, we shall represent DSTS in the same way as
local STS, adding to every resource collection contain-
ing units of some resource its location. We shall do the
same with inputs and outputs of “black boxes”, adding
locations to the names of resources. By this we im-
plant all necessary geospatial information into the rep-
resentation of technological and resource bases of local
sociotechnical systems, thus providing a unified form of
the representation of technological and resource bases
of the distributed STS. Similarly, geospatial informa-
tion may be added to orders, which also consist of the
afore-mentioned resource collections.

There will be the only syntactic extension for a lo-
cated resource representation – instead of a as names
of resources we shall use constructions a/p where “/”
is a divider, and p is the name of the point (place, area)



where a is located. By this minor change we expand
representation of a local sociotechnical system, its re-
source base and order on the distributed STS. From
this moment RB I contains n′1 units of resource a′1 lo-
cated at point p′1, ... , n′k units of resource a′k located
at point p′k . Similarly, a “black box” provides creation
of one unit of resource a, located at point p, if there
are n1 units of resource a1 located at point p1, ... , nm
units of resource am located at point pm, during a time
interval of n0 time units t. And, at last, the order de-
fines n̄1 units of resource ā1 located at point p̄1, ... , n̄l
units of resource āl located at point p̄l .

The presence of locations in all of the components of
the described intermediate formalization of DSTS pro-
vides a natural, flexible and simple representation of
logistical capabilities of such systems, including both
transportation and storage logistics. Storage located
at point p may be modeled by presence in the resource
base I of collections, containing n′I units of resource
a′I located at p, ... , n′I units of resource a′I located also
at p. Transportation capabilities, providing relocation
of one unit of resource a from point p to point p′

may be simply modeled by the “black box” with input
a/p with number 1, output a/p′, and inputs represent-
ing amounts of resources necessary for this operation



(among these resources may be an engaged transporta-
tion tool, i.e. cargo, ship etc., amounts of fuel neces-
sary for this tool and transported resource relocation
from p to p′, and some others). As may be seen, any
such approach to transportation operations modeling
unifies all objects participating in relocation – active
(transporting) as well as passive (transported).

The impact of a natural hazard may be represented
in the described framework as a set of locations affected
by the ND, so the result of the impact may be modeled
simply by eliminating of all resource collections whose
locations enter the given set. If destruction is partial,
the impact may be represented as in the local STS case,
i.e., in a form of a list of eliminated collections.

As may be seen from the description presented, a
unified representation of distributed and local sociotech-
nical systems makes redundant the development of a
special scheduler for DSTS. Thus, there is one general
problem for solution, i.e., development of unitary algo-
rithms for various types of orders, flows of orders and
flows of impacts on DSTS resources.

From the infological point of view, every DSTS is a
network-centered system based on Internet of Things
protocols, providing devices (“black boxes”) connec-
tion to the system integrating network and their mutual



data exchange. We presume that the afore-mentioned
protocols provide for informing of DSTS-S in the “business-
as-usual” mode, but also in various abnormal situations
caused by natural hazards leading to destruction and
malfunction of devices. This may serve as a background
for further consideration of one of the key problems
of creation of a digital economy – DE optimal (or, at
least, rational) scheduling on the whole life cycle and
in the full spectrum of situations. We shall use this
background for consideration of capabilities and limita-
tions of the known mathematical toolkits that may be
used for DSTS representation and DSTS-S algorithm
development.

The total set of DSTS-S tasks and their mutual in-
terconnections is presented in Figure 4 in a form of the
“flower” whose “petals” correspond to the described di-
rections of the considered sociotechnical systems clas-
sification. Each “petal” extends from the simple to the
more complicated case, thus every tuple of five different
values (more or less bulky) defines a specific subclass
of DSTS and, thus, a complex of problems that must
be solved while development of algorithms of sched-
ulers for this subclass. This development may now be
organized in the most rational direction – from simple
to complex. As may be seen there are 2 ·2 ·4 ·2 ·2 = 64
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classes of problems to be solved.
The problems described in the previous sections, in

some more or less general formulation, were considered
in many earlier works from the operations research area
and various segments of theoretical computer science.

Perhaps the closest to the set of tasks presented
in Figure 4 are models and algorithms developed in
scheduling theory. Various asynchronous systems, op-
erating upon limited resources, are modeled by different
classes of Petri nets. Models of optimal resource distri-
bution and transportation are thoroughly considered in
the operations research area by means of various matrix
and network optimization models.

Along with classical approaches to formulation and
solution of tasks, described earlier, some innovation
models are used that also have potential for efficient
application to these tasks: logic programming, con-
straint programming, deductive data bases, multiagent
systems, and multiset grammars.

Let us consider the listed approaches in more detail.

3. Scheduling Theory

Among many problems in the area referred to as schedul-
ing theory [Brucker, 2001; Chatfield and Johnson, 2013;
Pegden, 2009; Pinedo, 2008; the Resource Constrained



Project Scheduling Problem (RCPSP) is, from a sub-
stantive point of view, the most general and useful in
the application to the assessment of DSTS sustainabil-
ity. RCPSP algorithms are used in the mostly well-
known and widely applied production scheduling soft-
ware, implementing a wide spectrum of useful features:
material planning, job scheduling, capacity planning,
bottleneck optimization, automated rescheduling, “what
if” scenarios, priority-based scheduling, etc. (https://
www.jobpack.com; https://www.clarity- software.com/
wp-content/themes/melt default/bro chure/claritydigi-
talbrochure.pdf). RCPSP operates so called reusable
(active) resources (RR), which are similar to the de-
vices (“black boxes”) in the above intermediate for-
malization.

A reusable resource becomes available (may be acti-
vated) immediately after finishing its previous operation
cycle, which may begin when all un-reusable (passive)
resources necessary for this operation are also available.
Also there is a precedence relation upon the set of RR,
which defines that RR i must be completed before RR
j would be activated (or RR j may be activated only
after RR i completion). Every RR has its own duration
of operation cycle.

The problem is to create such a schedule, i.e., Gantt

https://www.jobpack.com
https://www.jobpack.com
https://www.clarity-software.com/wp-content/themes/melt_default/brochure/claritydigitalbrochure.pdf
https://www.clarity-software.com/wp-content/themes/melt_default/brochure/claritydigitalbrochure.pdf
https://www.clarity-software.com/wp-content/themes/melt_default/brochure/claritydigitalbrochure.pdf


chart, which provides minimum time of completion of
all projects, or, what is the same, the maximum of all
finish times of RR involved in project completion. This
value is called makespan.

RCPSP is one of the large number of problems con-
sidered in the scheduling theory segment called
constraint-based scheduling (CBS) [Baker and Trietsch,
2009; Baptiste et al., 2001], the background for which
is constraint programming, already mentioned above.

In the general case there are several types of schedul-
ing problems distinguished in the CBS area and differing
by the following basic features:

1. disjunctive/cumulative RR, the first executing no
more than one work (activity) at a time, while the
second several works in parallel (these are usually
associated with groups of identical RR);

2. preemptive/non-preemptive activities, the first cor-
responding to works that may be interrupted, while
the second to works that are not interrupted.

Also there is the so called “energetic reasoning”, usually
associated with CBS. This feature provides representa-
tion of non-reusable resources necessary for RR oper-
ation; however, all possible varieties of such resources
are reduced to only one – energy.



Along with RCPSP, the most common implemen-
tation by software involves algorithms for the so called
Preemptive Job-Shop Scheduling Problem (PJSSP),
which is formulated as follows. There is set of jobs
and set of machines. Each job consists of a set of ac-
tivities to be processed in a given order. Each activity
is associated with a processing time and a machine on
which it has to be processed. Activities may be inter-
rupted an unlimited number of times. Each machine
can process no more than one activity at a time. The
schedule to be created must minimize the makespan,
which in this case is time, when all activities are fin-
ished. PJSSP is solved by application of constraints,
worked out for this problem through a solutions search;
such an application is called “constraint propagation”.

There are RCPSP and PJSSP variations, very close
to the spectrum of problems described in the previous
section. These variations are usually considered inside a
special segment of scheduling theory called “robustness
and decision making” [Baker and Trietsch, 2009]. As
it is said in [Baker and Trietsch, 2009], “in practice,
it often happens that soon after a schedule has been
generated, an unexpected event happens that forces
the decision-maker to make changes”.

However, modern scheduling theory as a whole is



based on the primary consideration of reusable (active)
resources. Mutual interconnections and interdependen-
cies of the considered works (activities) must be apriori
known and defined by input data. The fact that these
interdependencies are a consequence of RR mutual ex-
change by unreusable (passive) resources, and project
scheduling is, in fact, “passive resources-driven”, comes
out of the modern scheduling theory mainstream.

4. Petri Nets

Petri nets are a flexible and convenient tool for the
description of systems whose subsystems until primary
(un-splitted) elements operate in parallel upon limited
amounts of shared resources [Desrochers and Al-Jaar,
1995; Recalde et al., 2004].

A Petri net has nodes of two types – places and tran-
sitions – connected by directed arcs. Every arc connects
a place with transition or transition with arc, so from
the graph theory point of view PN is a bipartite di-
rected graph. Each place at every moment contains a
non-negative integer number of tokens. Marking of the
net is defined as a vector whose elements are numbers
of tokens having a place in the corresponding places.
Marking defines the current state of a PN. A PN is



transferred from one state to another by means of so
called transitions firings, providing extraction of tokens
from places being input for transition, and addition of
tokens to places being output for transition. Transition
fires only if there are tokens in all input places.

The closest model to the considered problem of STS
sustainability assessment (let us be concerned only with
the local case for simplicity) is the class of PN called
colored timed Petri nets. Such PN have two main prop-
erties:

1. every token has its own color and may be inter-
preted as a unit of a specific resource correspond-
ing to this color (thus number of tokens of some
color in some PN place represents the amount of
the corresponding resource);

2. every transition has its own time of firing, i.e., time
interval between the moment when input tokens
are extracted from input places, and the moment
when output tokens are added to output places.

So, we may represent devices (“black boxes”) enter-
ing a modeled technological base of STS by transitions,
while the STS resource base is represented by a single
place containing colored tokens, according to which,
as noted above, we may represent amounts of specific



resources. Operation of an STS is modeled by the op-
eration of PN: all possible states of PN, that may be
reached from the initial state corresponding to the ini-
tial resource base of STS, define states of STS RB that
may be obtained by an STS technological base appli-
cation via possible industrial production chains.

As it is shown at Figure 5, colored timed PN repre-
sents STS, explicated at Figure 2, in such a way, that
it contains only two places and K + 1 transitions. First
of the places, marked by I , at the initial state con-
tains m1 + ... + mN tokens; m1 tokens are colored by
a
′′

1, ... , mk tokens – by a
′′

k . Thus STS RB I at the
initial moment of STS operation is represented by this
one place. Transitions B1, ... , BK represent respective
devices and have time marks, defining durations of op-
eration cycles of these devices (n1 · ∆t, ... , nk · ∆t).
Transition B represents order q in such a way, that re-
sult of of its firing is occurrence of one token colored q
at place G . Number of tokens at place G at the mo-
ment, when PN stops, defines number of various ways
of order q completion.

Impacts on the modeled STS may be easily repre-
sented by operations providing removal of tokens from
the place, representing a resource base, and also an-
other operation providing elimination of some transi-



Figure 5. STS representation by the colored timed
Petri net.

tions, representing affected devices. However, formu-
lation of criteria of sustainability of the affected STS,
defined by appropriate PN, is outside of the language
and algorithmics of Petri nets.

As may be seen, Petri nets are a more precise and,



from the substantive point of view, more adequate
mathematical tool for STS modeling in comparison with
various tools from the scheduling theory area. This is a
consequence of a resource-driven approach to the man-
ufacturing and logistics process representation. But at
the same time Petri nets do not have tools for the
description of orders, and PN algorithmics do not con-
tain algorithms creating optimal (rational) schedules for
completion of such orders.

5. Network Models and Mathematical

Programming

Network models have been for a long time the most
widely used tools for the formulation and solution of
various transportation problems. The most often used
application of networks and oriented graphs is represen-
tation of distributed infrastructures in such a way that
nodes represent points (places) of various resources ac-
cumulation and use, while arcs represent links providing
transportation of these resources between mentioned
nodes. Arcs are usually marked by numbers defining
length, bandwidth, traffic capacity and similar parame-
ters of links, or, simply, time necessary for relocation of



products (items) from one node to another. There are a
lot of problems solved by application of this framework
and known as the shortest path problem, the travel-
ing salesman problem, the maximal flow problem, etc.
[Ball et al., 1995; Jensen and Bard, 2003; Hillier and
Lieberman, 2014; Miller, 2007]. Impacts on networks
are represented simply by correction of parameters on
arcs and/or elimination of nodes.

More complicated problems concerning optimal dis-
tribution of resources, optimal transportation of re-
sources from places of their origination to places of
their consumption, etc. are usually described by means
of mathematical programming, first of all, linear pro-
gramming (LP) and its multiple variations [Gartner and
Matonsek, 2006; Miller, 2007; Roos et al., 2006; Van-
derbei, 2001].

An LP problem is formulated usually in a vector-
matrix basis in such a way, that it is necessary to find a
vector X(n) = ‖x1 ... xn‖ of non-negative rational values
that provide the maximal value of a linear function

F (x) =

n∑
i=1

cixi



under restrictions
n∑

j=1

aij · xj ≤ bi

where i = 1, ... , m.
This basic scheme is the background for more sophis-

ticated formulations involving some other restrictions,
described by some additional mathematical tools [Van-
derbei, 2001], as well as multiple optimization func-
tions providing formulation of a multicriteria optimiza-
tion problem.

LP and its modifications for practical application is
supported by widely and deeply developed efficient al-
gorithmics, providing sufficiently fast search for optimal
solutions on conventional and parallel computational
hardware.

As is known, an LP toolkit may be used for descrip-
tion of some problems from the theory of scheduling
[Artigues, 2012; Flondas and Lin, 2005].

Impacts in the LP formalization scheme may be rep-
resented by appropriate corrections of ci , bj and aij
values; there are known approaches to minimization
of computational complexity after correction of search
for optimal solutions by the so-called “local correction”
schemes [Sheremet, 1994]. Moreover, there are long-



standing techniques of LP solution by representation of
a concrete problem defined by a specific matrix A and
vectors B and C through the use of electric circuits
[Dennis, 1959]. This approach provides search for an
optimal solution as fast as a circuit containing analog
elements (resistors and capacitors) will pass the tran-
sition process and enter the stable state corresponding
to a solution. The same idea is in fact implemented in
the up-to-date quantum computers, based on quantum
annealing technology [Santoro and Tosatti, 2006].

Perhaps, the model closest to the considered STS
problems is the LP model of the so-called production
economy [Shoham and Leyton-Brown, 2009], operating
on the set of products and set of resources. Manufac-
turing of each product is based on the consumption of
a certain amount of each resource, and each product
is sold at a certain price. If we denote the amount of
product i as xi , and its price as ci , then the problem is
to maximize profit

n∑
i=1

cixi (1)

Denoting aij as the amount of resource j necessary for
manufacturing of one unit of product i , and bj as the
available amount of resource j , it is easy to formulate



appropriate restrictions:

n∑
i=1

aijxi ≤ bj (2)

As formulated, B(m) = ‖b1 ... bm‖ is a vector rep-
resentation of the STS resource base, while aij is in-
put value of resource j for “black box” i , and C(n) =
‖c1 ... cn‖ is a vector representation of order measured
in the price units. The impact may be easily represented
by vector ∆B , subtracted from B(m), and sustainability
of such a system may be defined as equality of solu-
tions of (1)–(2) of the LP problem in both cases (with
resource bases B(m) and B(m) −∆B).

However, this model does not catch deep recursive-
ness, inherent to real manufacturing processes, where
every manufacturing product may become a resource
for manufacturing of other products and so on. As
defined, (1)–(2) describe one-step manufacturing, in
which no one “black box” output may serve as another
“black box” input.

This disadvantage is inherent not only to this briefly
described model of a production economy, but practi-
cally to all known matrix-vector-based economical mod-
els [Chiang and Wainwright, 2005; Samuelson, 1952],



thus underscoring insufficient flexibility and adequacy
of classical matrix-vector-based mathematical toolkits
for the considered bundle of the DSTS scheduling prob-
lems.

Along with the afore-mentioned, LP and mathemat-
ical programming as a whole have some more practi-
cal disadvantages, being the consequence of matrix-
vector mathematical background: for practically valu-
able cases the dimension of matrices and vectors is so
large that it is very difficult to prepare and maintain in-
put data without errors. Another disadvantage of clas-
sical optimization approaches is that in many cases it
is very difficult, if even possible, to formalize intuitively
postulated conditions and criteria defining optimal so-
lutions by matrix-vector multiplications and relations
on the results.

That is why a serious research effort for the last
decades was applied to the development of mathemat-
ical toolkits, incorporating some additional features for
more convenient and precise formalization of systems
analysis problems.

The practically most valuable results in this direc-
tion were obtained in the area of data and knowledge
engineering – first of all, logic programming, deductive
data bases and, perhaps the most valuable toolkit from



this area – multiagent systems.

6. Logic Programming, Deductive Data

Bases, Constraint Programming, and

Multiagent Systems

The kernel of the logic programming paradigm, imple-
mented in a variety of dialects of the PROLOG pro-
graming language, is representation of a program, or
a knowledge base (KB) as a set of the so called Horn
clauses, each having the form

A1, ... , Am → A0 (3)

where Ai , i = 0, 1, ... , m are atomic constructions of
the first order predicate calculus, called atoms, of the
form P(t1, ... , tl) : P is a predicate name, and tj , j =
1, ... , l , are terms, being, in fact, functional expressions
in prefix notation upon constants and variables [Gallaire
et al., 1984; Kowalski, 1979].

The semantics of a PROLOG-like knowledge repre-
sentation is based on the procedural interpretation of
Horn clauses, the background for which is consideration
of clause (3) as a procedure declaration with A0 being
head, while list A1, ... , Am is the body of the procedure.



A call of program (or query to the knowledge base) is
a clause with empty head

A→

The factual part of the knowledge base (or input data
of the program) is a set of axioms, i.e., clauses with
empty bodies

→ Ak (4)

where k = 1, ... , K , and K is the total number of such
axioms in the KB (program). The set of axioms (4)
corresponds to the usual relational data base in such a
way that

→ R(a1, ... , al)

is equivalent to the tuple < a1, ... , al > presence in the
relation R .

The result of the program call (or of the query to
the KB) is created by means of logical inference in
the first order predicate logic whose kernel is so-called
resolution, based, in turn, on the unification of atoms
playing the role of the evaluation of variables during
recursive top-down calls until terminating axioms. Be-
cause of the existential semantics of PROLOG, the con-
sequence is that extraction of the only element of the



possible non-empty set of solutions, involving integra-
tion of logic programming with data engineering main-
stream (first of all, relational and post-relational data
models), is rather difficult. (The same must be said
about LoP application to the declared higher problems
of STS analysis.)

Another approach to knowledge and data engineer-
ing integration was developed inside the so-called “de-
ductive data bases” paradigm [Ceri et al., 1990; de
Moor et al., 2011]. DDB is a relational data base
with knowledge extension containing logical construc-
tions similar to Horn clauses, but providing logical in-
ference of new facts according to universal semantics;
the background for this is semantics of the most widely
used relational query language SQL [Date, 2009], which
deductive extension is called Datalog. This approach
as a whole creates some new features for primary con-
sideration in the afore-mentioned problems, but there
are no capabilities for the description of optimization
criteria and restrictions, and, thus, for formulation and
solution of STS optimization problems, as in higher
mathematical programming, as well as for description
of STS operation logic, similar to Petri nets.

Some new capabilities for these purposes are intro-
duced by the so called “active data bases” (ADB) para-



digm [Paton and Diaz, 1999]. Every ADB has knowl-
edge extension through a set of “triggers” – procedures
activated by the events of DB updates (deletion, in-
sertion or replacement of DB elements) and, in turn,
generating new updates. So, a wave of such recursively
activated operations in the general case may represent a
logical inference process as well as Petri net operation.
ADB tools provide description of logics of maintenance
of mutually interconnected elements of the stored data
base and are widely used in the most powerful mod-
ern data base management systems, such as Oracle
[Karam and Jones, 2014; Udayakumar, 2008], Sybase
[Verschoor, 2012], Informix [Grachov, 2000], MS SQL
Server [Date, 2009], etc.

However, neither deductive nor active data bases
provide direct and compact formulation and solution
of the DSTS problems described in the first section of
this paper. They are no more than a rather conve-
nient framework for the development of software, im-
plementing various algorithms for solution of the afore-
mentioned problems.

Constraint programming, already mentioned earlier
in connection with constraint-based scheduling, is an-
other approach to transfer from procedural to declar-
ative paradigm, whose main feature is the same as



in PROLOG: Algorithm = Logic + Control [Kowal-
ski, 1974]. There are a lot of examples illustrating the
great usefulness of this approach, and one, concerning
the area under consideration, was already considered
in Section 3. Of course, CP is a highly interesting di-
rection, and special argumentation of its applicability
to DSTS scheduling and sustainability areas are redun-
dant; however, the ideology, mathematics and algorith-
mics of such application must be worked out. One of
the possible attempts to solve this problem is to use
multiset grammars, considered below in Section 7.

Multiagent systems are a useful generalization of the
knowledge engineering paradigms described earlier and
are one of the most promising tools originating from the
artificial intelligence area [Shoham and Leyton-Brown,
2009; Wooldridge, 2002].

Every MAS contains a finite number of agents, inter-
acting by messages directly or via the so-called black-
board. Every agent operates according to his own
logic of processing of the incoming messages. This
framework provides a rather simple simulation of dis-
tributed social and economical systems behavior, as
well as implementation of various heuristic optimiza-
tion algorithms, such as auction-like optimization, con-
tract nets, ant colonies etc. Also, there are known



MAS implementing dynamic programming algorithms
in application to the transportation problems from the
operations research area, as well as MAS, providing so-
lution of the assignment problem and the scheduling
problem in their integer programming formulation.

It is quite evident, that MAS may be simply applied
to the DSTS analysis problems, if to consider devices
(“black boxes”) as one type of agent, and order along
with resource base as another. Interaction between
agents is implemented by messages containing amounts
of resources, which are used for new resource creation.
In such a case, the problem is to develop algorithms for
agents that provide creation of systems of contracts
between agents for order completion. This system of
contracts is, in fact, the DSTS schedule mentioned in
the previous sections. However, logics and algorithms
of MAS-based schedule generation must be worked out,
and in such cases application of MAS ideology to the
DSTS sustainability area forms no more than a basic
computational environment or framework for this de-
velopment. Another question is how to match MAS
agents, as they were defined above, with real hardware
and software used for DSTS scheduler operation. It is
very interesting and promising that MAS ideology puts
forward a decentralized approach to DSTS scheduling



and rescheduling, which is based on the agents’ inter-
action and doesn’t use DSTS-S as a local operation
center.

All we have said about possible MAS application to
the considered bundle of DSTS scheduling problems
leads us to the conclusion about usefulness of this direc-
tion, but also about essential research work that must
be done for its realization.

7. Multiset Grammars

The theory of recursive multisets (TRMS), which main
content was presented in [Sheremet, 2010, 2011, 2018],
is a result of an attempt to integration of the best fea-
tures of classical optimization and modern knowledge
engineering. Besides this abstract goal, there were also
some practical aims, close to the listed DSTS-S design
problems. That is why TRMS basic categories naturally
fit the intermediate representation of DSTS described
in Section 1.

A multiset (MS) differs from the classical set by pres-
ence of indistinguishable elements (objects), so a record

ν = {n1 · a1, ... , nm · am}

means multiset ν contains n1 objects of type a1, ... , nm



objects of type am (each ni · ai is also called a multi-
object, and ni the multiplicity). By this, the resource
base of a DSTS may be represented as a multiset.

A multiset grammar is a couple S =< ν0, R >,
where MS ν0 is called the kernel, and R is the set
of the so called rules

ν → ν ′ (5)

where ν and ν ′ are multisets. MG S generates a set of
multisets by application of rules to already generated
multisets, beginning from the kernel ν0. Application of
rule (5) to multiset ν̄ is possible if ν is a submultiset
of ν̄ (i.e., all objects entering ν enter ν̄), and results in
replacement of ν by ν ′. A set of multisets generated by
MG S is denoted VS , and the set of so called terminal
multisets such that no one rule is applicable to them is
denoted V̄S .

Returning to the intermediate representation of DSTS,
it is quite natural to represent every device (“black
box”) by a rule, and the initial resource base by ker-
nel ν0, so DSTS as a whole may be represented by a
multigrammar S =< ν0, R >, where R is the set of all
mentioned rules (i.e., devices). As such, the operation
of DSTS is fully represented by the generation of mul-
tisets by MG S , and every such multiset is the result of



some manufacturing chain. Also, V̄S is a set of such
RB, which may be called the final resource base in the
sense, that no one device can be applied to it because
of lack of input resources necessary for its operation
cycle.

An order, which was represented above as an ad-
ditional “black box”, may be also represented as an
additional rule

{n̄1 · ā1, ... , n̄l · āl} → {1 · q} (6)

where n̄1, ... , n̄l are amounts of objects (resources)
ā1, ... , āl that must be produced (manufactured) by
DSTS; q is an auxiliary object, denoting the name of
the order. As may be seen, every multiset ν ∈ V̄S con-
taining multiobject 1 · q represents the possible result
of order completion by one of the possible ways, and
also the RB final state after this process terminates.
If there is no set containing 1 · q, order q cannot be
completed by DSTS.

The impact on DSTS, whose technological base
is represented by scheme R of multigrammar
S =< ν0, R >, may be easily represented by multiset
∆v containing amounts of resources, eliminated from
the resource base by this impact, and set ∆R , contain-
ing destroyed devices. So, there is a quite simple and



evident criterion for the assessment of DSTS sustain-
ability to the impact < ∆v , ∆R > [Sheremet, 2016,
2018]: if

(∃ν ∈ V̄S∗)1 · q ∈ ν

where S∗ =< ν0 − ∆ν, R − ∆R >, then DSTS is
sustainable to the impact (i.e., there exists at least one
way of order completion by the affected system).

The family of multiset grammars contains various
classes of MG, describing various classes of DSTS and
orders, while corresponding algorithms of generation
of sets of multisets implement creation of schedules
providing completion of those orders.

So, in alia, a filtering multigrammar S =
< ν0, R , F > defines a set of terminal multisets as a
subset of set V̄S generated by MG S ′ =< ν0, R >;
all elements of this subset satisfy filter F containing
so-called boundary and optimizing conditions, having
the form a Θ n and a = opt respectively. Here Θ is a
sign of a boundary condition (≥, =, ≤, > ,<), opt
∈ {min, max} a sign of optimizing condition, while a
and n are object name and number respectively. Filters
provide selection of such TMS, which contain multiob-
jects with multiplicities, satisfying all conditions enter-
ing the filter. As can be seen, the language of filters



is very close to the usual query languages, providing
selection of elements from the relational and deductive
databases by restrictions on values of attributes in these
elements. Here every multiset {n1 · a1, ... , nm · am} is
equivalent to the element < n1, ... , nm > of the DB
relation with attributes a1, ... , am. The only difference
from the DDB is that the set of multisets generated by
MG S ′ =< ν0, R > is in the general case infinite. How-
ever, optimizing conditions radically extend capabilities
of this language, providing easy formulation of various
optimization problems, and, what is very valuable, far
beyond the classical scheme of linear programming.

Temporal multigrammars (TMG) provide description
of manufacturing processes in connection with a unified
scale of time, which creates background for formulation
and solution of scheduling problems inside a multigram-
matical framework. This feature is supported by rules
like

{n1 · a1, ... , nm · am, n ·∆t} →

{n′1 · a′1, ... , n′l · a
′
l}

where ∆t is an object representing time measurement
unit, as was introduced earlier in Section 2; so multi-
object n ·∆t represents duration of the operation cycle



of a device, that extracts n1 objects a1, ... , nm objects
am, and after n time units ∆t joins to RB n′1 objects

a′1, ... , n′l objects a′l . By including conditions like t
>
< n̄

or/and t = min to the filter F , which defines restric-
tions for order completion, one gives all the necessary
input data for DSTS scheduling, which is implemented
through the background of TMG generation algorith-
mics.

The general scheme of MG application as a tool for
the solution of various problems of DSTS scheduling
looks like the following. The knowledge base of DSTS-
S is in fact scheme R , while the resource base of DSTS
is kernel ν0 of the MG S =< ν0, R > (in the general
case S is a temporal multigrammar). Every order to
DSTS is a couple < ν, F >, where

ν = {n̄1 · ā1, ... , n̄l · āl}

is the left part of rule (6), and F is the filter, contain-
ing conditions for filtering resource bases, that would
be obtained after order completion. These variants are
filtered, in fact, by filter F ∪ {q = 1}, and, if there
is more than one variant, the scheduler selects one of
them arbitrarily, or suggests DSTS management to per-
form further actions (for example, filtration of a set of
variants by the additional filter F ′). The flow of the or-



ders is processed with a maximal degree of parallelism,
i.e., processing of every next order starts immediately,
no matter how many previous orders are being pro-
cessed at this moment. If impacts occur while orders
are being completed, rescheduling is performed upon
corrected KB and RB.

Multiset grammars look like one of the most promis-
ing tools for the DSTS problem solution. The MG
current state of the art, however, is not yet sufficient
for their broad implementation, that is why a strong
research effort must be applied to this approach for
further development.

8. Conclusion

Comparison of capabilities of the considered mathemat-
ical toolkits for DSTS scheduling problems leads us to
the conclusion that there are two most promising fam-
ilies of such tools – multiagent systems and multiset
grammars, whose development and, perhaps, integra-
tion will be the most successful approach to the consid-
ered area. This approach would be supported, however,
by cooperation of multiple research groups from differ-
ent countries. Such cooperation may be implemented
by some authoritative international think-tanks like CO-



DATA (the Committee on Data of the International
Council for Science) or IIASA (International Institute
for Applied Systems Analysis).

The authors would be glad to participate in such
collaboration.



List of Acronyms

ADB active data base
CBS constraint-based scheduling
CP constraint programming
DB data base
DDB deductive data base
DE digital economy
DSTS distributed sociotechnical system
DSTS-S DSTS scheduler
IoT Internet of Things
KB knowledge base
LP linear programming
LoP logic programming
MAS multiagent system
MG multiset grammar (multigrammar)
MS multiset
ND natural disaster
PJSSP Preemptive Job-Shop Scheduling Problem
PN Petri net
RB resource base
RCPSP Resource Constrained Project Scheduling Problem
RR reusable resource
STS sociotechnical system
STS-S STS scheduler
TB technological base
TMG temporal multiset grammar
TRMS theory of recursive multisets
WAN wide area network
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