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be 3–5 times more. With increasing Rayleigh number
the thickness of tails decreases.

2. Primary mantle plumes originate as fluctuations in the
instability of the thermal boundary layer and only
at the bottom of the mantle near the highly heat-
conductive iron core. Primary mantle plumes cannot
emerge inside the mantle because they need a tank
capable to bring heat to a plume for a long time up to
100 Myr.

3. The plume mode of thermal convection is a tran-
sition between stationary and turbulent convection.
Therefore, both the ascending and descending man-
tle plumes are non-stationary and, in particular, can
change their position in space. An important factor
influencing the horizontal movement of the plumes is
the effect of the mutual hydrodynamic attraction and
displacement of adjacent plumes.

4. The numerical experiments show that the main rea-
son for the decay of mantle plumes is not their atten-
uation, but merging of two adjacent plumes into one
new plume. Lifetime for most mantle plumes is about
100 Myr or more. But, as an exception, the lifetime
of plumes may be less, even down to 30 Myr.

5. When the plume approaches to the lithosphere, about
20 Myr after its origin at the bottom of the mantle,
the plume head first penetrates the lithosphere. Later
the lithosphere is penetrated by the plume tail. The
plume tails are not continuous jets because they are
constantly fluctuating. They are similar to the heated
channels in which the quanta of hot material ascend
periodically.

6. The sizes of quanta are smaller than head sizes, but
quanta move in the pre-heated low-viscosity channel.
As a result, the speed of rising quanta is compara-
ble to the speed of rising plume head, approximately
15 cm/yr. The physical meaning of these quanta prob-
ably is that this is a transitional mode from convection
with stationary plumes to convection with thermals,
when only heads without tails constantly emerge from
the mantle bottom.

7. When a plume passes through the phase boundary
with a viscosity jump, it slows down a few due to the
jump of the density and is accelerated due to lower vis-
cosity of the upper mantle. As a result, new smaller
upper mantle plumes (secondary plumes) are born at
the phase boundary. Since the conveyor of quanta
rises in the channel of plume tail, and there are ap-
proximately two quanta in a tail, the interval between
quanta is twice as small as the time of their ascent and
is approximately equal to 10 Myr. Next, each quan-
tum generates about two secondary plumes. However
the latter are not born continuously, but only after
the quantum has approached to the phase boundary.
Therefore in considered model between the secondary
plumes appear two time intervals 𝑡 = 2 Myr and
𝑡 = 8 Myr. These secondary plumes can cause vol-
canic eruptions with the same time intervals.

8. The calculated lifetimes of plumes and periods of oscil-
lation of the plumes are in qualitative agreement with
the observed times of emergence of volcanic islands. In

Video 1. Calculated evolution of vigorous mantle convec-
tion for 200 Myr at 𝑅𝑎 = 8 × 107. See Appendix for more
detail.

contrast to the fast velocities of solitary waves [Olson,
1990; Schubert et al., 2004], the velocities of quanta of
hot material in the plume tail computed in our model
are comparable with convection velocities and there-
fore are of a different nature.

9. Since the aim of this work has been a study of plume
pulsation and their motion through the upper mantle,
the influence of the 𝐷′′ layer and the accumulation of
heavy material at the bottom of the mantle on the
spatial distribution of plumes [Torsvik et al., 2010;
Trubitsyn et al., 2015] were not taken into account.
This work also did not consider the passage of plumes
through the lithosphere and the crust which can also
lead to additional pulsations in eruptions.

10. The calculated model with 𝑅𝑎 = 7.5× 106 shows that
the pulsation of mantle plumes and secondary plumes
in the upper mantle occurs even at low Rayleigh num-
bers and the pulsation is an intrinsic property of man-
tle plumes.

Appendix

The authors created a high-resolution video of the calcu-
lated evolution of vigorous mantle convection for 200 Myr
at 𝑅𝑎 = 8 × 107 that can fit a little earlier Earth. In this
case the quanta of hot material in the plume tail in the lower
mantle are expressed even clearer, and their faster rise some-
times becomes similar to isolated thermals. In addition, the
secondary plumes in the upper mantle occur more often.
Therefore smaller periods should appear in the spectrum of
eruptions.
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The low-resolution Video 1 is produced from the original
authors’ video to make its volume accessible for including
in this PDF file. Original high-resolution video of mantle
convection is freely accessible from RJES server (http://
rjes.wdcb.ru/v16/2016ES000569/plumes-hr.html).
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