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A special technique for testing models of continuous
oscillatory processes in the magnetosphere
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Abstract. This paper offers a new method for processing and investigating regular
oscillatory processes based on analyzing amplitude and phase fluctuations. The method
makes it possible to determine (having the interval of a recording of the oscillatory process
as initial information) the structure of differential equations controlling this process, as
well as the numerical values of coefficients of all terms involved in them. The possibilities
of the method are illustrated by considering geomagnetic Pc1 pulsations. It is shown
experimentally that these pulsations, when observed on the ground, have properties which
are consistent with that of forced oscillations of some resonating structure. The frequency
of the main normal mode is estimated: f1 ' 0.2 Hz. Most likely the nature of this
resonating structure relates to the ionosphere. It is also shown that within the framework
of the adopted approach the second harmonic of the carrier frequency of Pc1 observed on
the ground is caused by the second harmonic of magnetospheric radiation acting on the
resonator and is not the consequence of the nonlinearity of the regime of forced oscillations.

1. Introduction

Wave and hydromagnetic diagnostics of the near-Earth
plasma requires special methods to obtain information about
the whole system, including parameters of the medium, bas-
ing on results of measurements made at some local site.
There is no universal technique to achieve this goal. Dif-
ferent approaches are used depending upon the kind of os-
cillation, its source, and the structure of system. They in-
clude spectral analysis, the method of the analytical signal,
study of dynamic spectra, examination of the dispersion, i.e.
the frequency dependence of the arrival time of the signal,
etc. By means of various tricks, these procedures provide
individual characteristics of some parts of the system.

Here we present what is termed the technique of statis-
tical modeling which is able to give information on general
properties of an oscillating system, making it possible to
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build a mathematical model describing the dynamics of the
system. Besides, this method provides a means of calcu-
lating, based on in-situ experimental measurements, some
physical characteristics of the system, such as its eigenfre-
quencies and rate of decay. The technique suggested is based
on analyzing the amplitude and phase fluctuations. Cor-
relation functions of these fluctuations depend to a large
measure on the properties of the subject under study thus
providing the starting point for constructing a mathematical
model of the object by solving an inverse problem. (How-
ever, we must note here that our technique does not follow
the classic inverse theory quite strictly. Therefore, in this
paper the term “inverse problem” has conventional mean-
ing.) This approach was first proposed by Gudzenko [1962]
and has been successfully used to study solar activity cycles
[Gudzenko and Chertoprud, 1964]. In geophysics, it was used
to investigate Pc4 [Guglielmi et al., 1983] and Pc3 [Polyakov
and Potapov, 1989; Polyakov et al., 1992] continuous geo-
magnetic pulsations. It is known that Pc3 pulsations are
forced oscillations of geomagnetic field shells. Therefore, to
describe them, a model of a damped oscillator excited under
the action of an external periodic force might be best suited
for this purpose. Polyakov and Potapov [1989] and Polyakov
et al. [1992] used the above model, and this allowed them to
put forward a way to estimate such key parameters for di-
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agnosing the magnetosphere as the damping coefficient and
the oscillation eigenfrequency of various magnetic shells.

In this paper we give a description of a special technique
for analyzing the oscillations (section 2), describe in details
the procedure for solving an inverse problem (section 3),
build a dynamic model of oscillations with taking into ac-
count the second harmonic of the carrying frequency (sec-
tion 4), apply the statistical modeling technique to the anal-
ysis of Pc1 geomagnetic pulsation (section 5), and, in closing,
discuss the results obtained (section 6).

2. Description of a Special Technique for
Analyzing the Oscillations

Gudzenko [1962] developed the algorithm for solving an
inverse problem of statistical theory of oscillations. Being
one of the ways to handle time series of continuous peri-
odic processes, this algorithm makes it possible to reveal
the properties and to determine quantitative characteristics
of a model of the subject which gives rise to the oscilla-
tions. In the proposed method it plays the same role as
Fourier-transform in spectral methods. Hence there is a need
to consider its main concepts.

Any periodic oscillatory process with one degree of free-
dom x0(t) may be considered to be the solution of a set of
ordinary differential equations of a general form:

dx0

dt
= y

dy0

dt
= f(x0, y0, t)

(1)

Here f(x0, y0, t) is an arbitrary function only limited by the
condition of x0(t) periodicity. The form of the dependence
of this function upon variables determines the kind of oscil-
lations: free, forced, etc.

Geomagnetic pulsations (ULF emissions), like most nat-
ural oscillatory processes, are not strictly periodic. Even
within an ideal fragment of Pc type pulsations random
changes of amplitude and phase inevitably occur. To take
this into account, we add to the right-hand side of (1) a
random function F (t). This can be done providing the am-
plitude and phase fluctuations are not large, i.e. F (t) does
not heavily distort the output signal:

dx

dt
= y

dy

dt
= f(x, y, t) + F (t)

(2)

Usually, a so-called Langeven source is used as a F (t), i.e. a
random process, an auto-correlation function for which has
the form of F (t)F (t + τ) = 2Dδ(τ), where δ(τ) is a delta-
function, and D is the intensity of a random effect on the
system. The technique proposed here does not require such a
strong limitation. A sufficient condition is τF < T , where τF

is the characteristic correlation time, and T is the oscillation
period.

The model system of stochastic differential equations (2)
forms the basis of the algorithm for solving an inverse prob-
lem. The procedures of this algorithm are all intended for
determining the form of the dependence of a deterministic
function f(x, y, t) upon its arguments. In doing so, a finite
fragment of the measured signal x(t) is used as initial data,
and scarcely any a priori information about the function f
is invoked.

Figure 1a gives an example of the solution of equation (2)
for the case where f(x, y, t) represents forced oscillations:

f(x, y, t) = −νy − ω2
0 + A sin(ωt + ϕ) (3)

where ν and ω0 are the damping coefficient and the eigen-
frequency of the oscillator, respectively; A, ω, and ϕ are the
amplitude, the frequency, and the initial phase of a peri-
odic external force, respectively. The amplitude and phase
of the solution contain fluctuations caused by the action of
a random force F (t). In statistical radio physics, such a
signal refers to periodic non-stationary random processes.
For them, an extension of the ergodicity theorem [Gudzenko,
1961] is true. According to this theorem, an average (over
the probability) oscillation is defined as an average of all
separate oscillations which are present in the chosen time
interval. We will designate an average over an ensemble of
oscillations by the angle brackets. To define < x >, let us
now analyze the system of equations (2) on the phase plane
by choosing x and y as Cartesian coordinates. With a small
random action while D is less than the square of the signal
amplitude an average solution (2) must coincide with a so-
lution for the unperturbed system (1). Figure 1b presents
a phase portrait of the solution (2), (3) corresponding to
Figure 1a. Each separate oscillation x(t) determines a cyclic
track in the phase plane, and an average solution x0(t), y0(t)
corresponds to the mean statistical cycle shown in Figure 1b
by the dotted line. Hereafter we will call this cycle the mean
phase track (MPT). While the perturbation is small, the
MPT represents a closed coil without self-crossings. A per-
pendicular to any point of the mean track intersects phase
tracks at some points. The distances to these points are
normal deviations of tracks from MPT. The position of the
mean track in the phase plane is determined by the following
condition: each of its points is the geometric sum of normal
deviations. MPT is built by the oscillations phase portrait
using a special method of successive approximations.

Let us now use a local system of coordinates related to
MPT. We take at an arbitrary instant of time a point A
on the phase track (see Figure 1b). For each of such points
it is possible to determine uniquely the nearest point M at
MPT. Let an interval AM be normal coordinate n in the
local system, n = ±AM , and the minus sign corresponds to
points located inside MPT. Let the tangential coordinate θ
of the point A be defined as the length of the sector of MPT
from the initial point M0 to the M projection measured in
time units. For definiteness sake, it is assumed that the point
M0 is the point where MPT intersects the negative ray of
the horizontal axis X. Equations (1) for the mean phase
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Figure 1. Stochastic forced oscillations of an attenuating oscillator: (a) a sample of oscillations; (b) phase
portrait of oscillations. Dashed line corresponds to the mean phase trajectory.

track in local coordinates n and θ take the form

n = 0 θ = t

A random action F (t) in the system (2) leads to a deviation
of phase tracks from MPT, therefore the following conditions
must be true for them

n 6= 0 θ = t + γ (4)

where γ is a random value coinciding with the tangential
deviation of the point A from MPT. Normal and tangential
deviations have a simple physical meaning. They determine
the amplitude and phase fluctuations, respectively, of the
signal of unit frequency measured at the output of the sys-
tem (2). The tangential coordinate θ is the phase of the
mean or non-disturbed oscillation, and t is the signal phase
with taking into account the action by a random force F (t).

The local coordinates n and θ completely describe the
position of the point represented on the phase portrait of
the oscillation providing the MPT is defined. Therefore in
the set of equations (2) we can pass from the coordinates x
and y to n and γ, and oscillation phase t change to phase
of MPT. To do this, we will use relations which follow from

the sketch presented in Figure 1b:

x = x0(θ) + n sin α(θ)

(5)

y = y0(θ) + n cos α(θ)

where α is the angle between a normal to MPT and the
axis OY . On substituting equation (5) into equation (2) by
taking into account equation (4), we obtain a set of equations
which are linear with respect to the small values of n and γ

dn

dθ
= −G1(θ)n + G2(θ)γ + Fn(θ)

(6)

dγ

dθ
= G3(θ)n−G4(θ)γ + Fγ(θ)

Here Gi(θ) are so-called dynamic coefficients (DC) which are
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defined by

G1(θ) =
z0y0

r2
0

− y0fx,y

r0

G2(θ) = −fty0

r0

G3(θ) =
y2
0 − z2

0 + y0ż0

r3
0

+
z0fx,y

r2
0

G4(θ) =
ftz0

r2
0

r0 = (y2
0 + z2

0)1/2 z0 = ẏ0

fx,y =
−z0fx

r
+

y0fy

r

fx =
∂f

∂x
∣∣
x=x0,y=y0,t=θ

fy =
∂f

∂y
∣∣
x=x0,y=y0,t=θ

ft =
∂f

∂t
∣∣
x=x0,y=y0,t=θ

(7)

The dot above a symbol means a derivative over θ. Fn and
Fγ are normal and tangential components of a random ac-
tion, respectively,

Fn(θ) = − sin α

r0
F (θ)

(8)

Fγ(θ) = cos αF (θ)

It follows from equation (8) that DC are combinations of
periodic functions. So they must also be periodic with the
mean period of oscillations.

Simultaneous equations (6) represent a pair of nonhomo-
geneous linear differential first-order equations. Their solu-
tion can be written down in a general form using the concept
of the transfer function H(θ, t):

n(θ) =

θ∫
−∞

Hn(θ, t)Fn(t)dt

(9)

γ(θ) =

θ∫
−∞

Hγ(θ, t)Fγ(t)dt

Let us consider the first equation of the system (6). Let
us multiply it successively by n(θ − τ) and γ(θ − τ). After
performing the procedure of averaging over an ensemble of
phase cycles, we will have〈

dn

dθ
n(θ − τ)

〉
+ G1(θ) 〈n(θ)n(θ − τ)〉

−G2(θ) 〈γ(θ)n(θ − τ)〉 = 〈Fn(θ)n(θ − τ)〉

〈
dn

dθ
γ(θ − τ)

〉
+ G1(θ) 〈n(θ)γ(θ − τ)〉 (10)

−G2(θ) 〈γ(θ)γ(θ − τ)〉 = 〈Fn(θ)γ(θ − τ)〉

Using the fact that the correlation time τF of the random
function F is limited by the period, it is not difficult to
show that the right-hand sides of the above equalities are
zero providing τ > τF . To do this, the relation (9) for n is
substituted into the right-hand side of the first of the equal-
ities (10). Taking into account (8), we obtain

〈Fn(θ)n(θ − τ)〉 =
sin α

r0

θ−τ∫
−∞

Hn(θ, t) 〈F (θ)F (t)〉 dt

We consider a random process F (t) to be a stationary pro-
cess with a limited correlation time. This means that the
correlation function under the integral depends only on the
difference θ − t and can be presented as

〈F (θ)F (t)〉 = 0 when θ − t > τF

〈F (θ)F (t)〉 6= 0 when θ − t ≤ τF

Since t changes with integration from −∞ to θ − τ the
limits of the domain of variation of the function argument
〈F (θ)F (t)〉 will be ∞ and τ . If τ > τF , then the integrand
is zero with arbitrary t. We can prove in the same manner
that 〈Fn(θ)γ(θ − τ)〉 = 0 with τ > τF .

If one applies the same procedure to the second equation
of (6), then a set of four algebraic equations will result in
which the dynamic coefficients Gi, i = 1, 2, 3, 4 are con-
sidered to be the unknown terms. By solving this set of
equations, one gets formulas to determine the DC phase de-
pendencies:

Gi = Gp
i τ > τF

Gi 6= Gp
i τ ≤ τF

Gp
1 = (〈ṅ(θ)γ(θ − τ))〉 〈γ(θ)n(θ − τ)〉

− 〈ṅ(θ)n(θ − τ)〉 〈γ(θ)γ(θ − τ)〉)C−1(θ, τ)

Gp
2 = (〈ṅ(θ)γ(θ − τ)〉 〈n(θ)n(θ − τ)〉

− 〈ṅ(θ)n(θ − τ)〉 〈n(θ)γ(θ − τ)〉)C−1(θ, τ)

Gp
3 = −(〈γ̇(θ)γ(θ − τ)〉 〈γ(θ)n(θ − τ)〉
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+ 〈γ̇(θ)n(θ − τ)〉 〈γ(θ)γ(θ − τ)〉)C−1(θ, τ) (11)

Gp
4 = −(〈γ̇(θ)γ(θ − τ)〉 〈n(θ)n(θ − τ)〉

+ 〈γ̇(θ)n(θ − τ)〉 〈n(θ)γ(θ − τ)〉)C−1(θ, τ)

C(θ, τ) = 〈γ(θ)γ(θ − τ)〉 〈n(θ)n(θ − τ)〉

− 〈γ(θ)n(θ − τ)〉 〈n(θ)γ(θ − τ)〉

It is necessary to note that Gp
i can be uniquely determined

using the known fluctuations of the amplitude, phase, and
their derivatives over the phase for an arbitrary value of τ . If
we find τF in any way, then we can determine the phase de-
pendencies of DC which contains information about the form
of dependence of the function f(x, y, t) on its arguments.

3. Procedure for Solving an Inverse
Problem

The relations (11), along with the method of building
MPT, are the basis for solving an inverse problem. The
procedure of solving can be divided into several steps.

3.1. Preprocessing

A fragment of the measured signal is chosen in such a
way that the first and the last values both correspond to
oscillation minima. Each of the values of the initial signal
x(t) is normalized to the amplitude averaged over the frag-
ment, and time t is measured in units of the mean period
corresponding to the carrier frequency. After that, for every
value of x(t), the value of y(t) = dx/dt is calculated.

3.2. Constructing the Mean Phase Track

The tracks of all oscillations are plotted in the coordi-
nate plane x, y. After that, the mean track is plotted by the
method of successive approximations, and the local coordi-
nate values of n and θ are assigned to each of track points.
The units of phase θ measurement are radians, and n is
a dimensionless quantity. Using formula (4) the tangential
deviations are calculated. It is worth noting that MPT rep-
resents a parametric sequence of points (x0, y0). Thus it is
easy to find the analytical form of the phase dependence of
x0 as soon as the main track has been found in a graphic
way.

3.3. Searching for the Phase Dependence of
Dynamic Coefficients

Correlation functions are calculated from the relations
(11) for the main values of the phase θ using the known
values of n and γ. The angle brackets designate an average
over an ensemble of oscillations. So every correlator is de-
fined as an average of those values of the quantity between
the brackets that have a phase which differs from the main
value by 2kπ, where k is an integer. Formulae (11) can be
only used when τ > τF . The upper boundary for τF is the
mean period, the lower boundary can be determined only by
invoking additional information on the origin of oscillations.
In the case of lack of such information every value of DC
should be calculated for several different τ , whereupon the
average should be found in order to reduce the errors of DC
evaluation. It should be noted that calculations of both the
mean oscillation and DC are the more accurate, the greater
number of oscillations is contained in the initial fragment of
the signal. If this number is not very large (10–15), then the
phase dependencies x0(θ) and Gi(θ) can differ substantially
from the true ones.

3.4. Revealing the Harmonic Structure of the
Phase Dependence Functions x0(θ) and Gi(θ)

These functions are found only for the main values of the
phase, so they should be considered periodic. The frequency
of the main mode, in view of the normalization, is unity.
Since any periodic function can be represented as the sum
of Fourier series, the following relations are true for the phase
dependencies of x0 and Gi:

x0 =

N∑
j=1

(aj cos jθ + bj sin jθ)

(12)

Gi = Ai0 +

N∑
j=1

(Aij cos jθ + Bij sin jθ)

Here j is the harmonic number equal to its frequency, i is the
DC index, and N is the total number of harmonics. Ampli-
tudes of the mean oscillation aj , bj are found when building
MPT. The coefficients Aij , Bij can be calculated from the
known dependencies Gi(θ) by the method of least squares.

Thus the final product of the procedure of solving the in-
verse problem includes two groups of parameters, (aj , bj)
and (Aij , Bij). The parameters of the first and second
groups, respectively, characterize the mean oscillation and
the deviation of actual oscillations from the mean. Conse-
quently, no predetermined functional connection can exist
between them, as it is impossible to indicate a universal
procedure of calculating Aij , Bij from the known aj , bj , and
vice versa. No such connection exists also between individ-
ual parameters inside each group. On the other hand, they
must all depend, by definition, on the form of one function
f(x, y, t). If it becomes clear after an independent calcula-
tion that some of them can be expressed in terms of others,
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then a study of these relationships must reveal the structure
of the dependence of the function f on its argument.

Proceeding further along the path of solving the inverse
problem, we seek to find the method of determining f(x, y, t)
from the known aj , bj , Aij , Bij . To do this, we consider the
case of forced oscillations as an example. The system (2),
(3) should be considered to be the initial equations describ-
ing these oscillations. Upon substituting (3) into (7), we
determine the form of the phase dependencies of the DCs

G1(θ) = α− α cos 2θ − β sin 2θ

G2(θ) = −β + β cos 2θ − α sin 2θ

G3(θ) = β + β cos 2θ − α sin 2θ (13)

G4(θ) = α + α cos 2θ + β sin 2θ

α =
ν

2ω
β =

1

2

(
ω2

0

ω2
− 1

)
By comparing (12) and (13), it is easy to check that the out-
put parameters of the inverse problem for forced oscillations
are related by the following relations:

A10 = −A12 = A40 = A42 = −B22 = −B32 = α

A30 = A32 = −A20 = A22 = −B12 = −B42 = β (14)

Aij = Bij = 0 i = 1, 2, 3, 4 j = 1, 3, 4, ...., N

The MPT, in view of the normalization, will have the form
of a circle of unit radius. Hence the output parameters of
the mean oscillation may be represented as

a1 = −1 b1 = 0

aj = 0 bj = 0 j = 2, 3, ...., N

Thus, if the output parameters of the inverse problem for
the oscillatory process satisfy the conditions (14), then they
will be forced oscillations, and the dynamics of the process
must be described by the system of equations (2), (3). Using
such an approach, it was shown in [Polyakov and Potapov,
1989] that geomagnetic pulsations Pc3 refer to this type of
oscillations. This conclusion could be considered trivial, if,
along with it, there were no possibility of experimentally
determining such parameters of the oscillator as the damping
coefficient ν and the eigenfrequency ω0. Formulas by which
these parameters are calculated, are the consequence of the
conditions (14) and have the form

ν = ω(A10 + A40)

(15)

ω0 = ω
√

A30 −A20 + 1

Consider now the case of weakly nonlinear forced oscilla-
tions. Assume that the right-hand side of (3) addition-
ally contains small (in value) nonlinear second-order terms
c1x

2, c2y
2, c3xy. The MPT in this case does not have the

form of an ideal circle, because the phase dependence of the
mean oscillation contains a small (in amplitude) second har-
monic a2 6= 0, b2 6= 0. By making use of the relations (7),
it is possible to demonstrate that in the phase dependen-
cies G1(θ) and G3(θ) (13) there appear terms corresponding
to the fundamental and third harmonics. As a result, the
conditions (14) are supplemented by the relations

2A11 = −2A13 = −B33 = c3

A31 −A33

2
= B13 −B11 = c2

A31 + A33

2
= −3B13 + B11

2
= c1

It should be noticed that c1, c2, c3 are dimensionless quanti-
ties, because the arguments of the function f(x, y, t) are con-
sidered normalized to the mean amplitude and to the mean
period. It has been pointed out above that the accuracy of
determining the output parameters of the inverse problem
depends on the number of oscillation periods containing in
the sample. Therefore, we verified the resulting conditions
not through a simple comparison of the output parameters
but using statistical methods of verifying hypotheses. Fulfill-
ment of the conditions serves as the proof that the relation
for the function f(x, y, t) involves nonlinear terms. By calcu-
lating the coefficients c1, c2, c3 from the output parameters,
we thereby determine the form of each of them.

Harmonics in forced oscillations can appear not only due
to nonlinear terms in equations (2), (3). A similar result
ensues from the presence of small oscillations in the driv-
ing force which have a frequency multiple to the carrier fre-
quency. However, if we are dealing with the second harmonic
of the driving force, then the additional fundamental and
third harmonics in the phase dependencies (13) appear in
another pair of coefficients G2(θ), G4(θ). By analyzing the
relationships between output parameters of these harmon-
ics, we can either accept or discard a hypothesis of presence
of oscillations with double frequencies in the source, as well
as determine the numerical values of the characteristics of
these oscillations. In this way, using the proposed method
of analysis, it is possible to exactly indicate the cause of the
appearance of harmonics in the oscillations under investiga-
tion.

The oscillations that contain the third harmonic are inves-
tigated according to the same scheme. The difference from
the preceding case only implies that the phase dependencies
of the DCs (13) are supplemented not by the fundamental
and third harmonics, but by the second and fourth harmon-
ics. Such a result suggests an important generalizing conclu-
sion. The terms of a different power index in the arguments
x and y involved in the expression for the function f(x, y, t)
contribute to different harmonics of phase dependencies of
dynamic coefficients. For that reason, by analyzing the har-
monic composition of the DCs, we can determine the form
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Table 1. Values of the Coefficients Aij and Bij

j = 0 j = 1 j = 2 j = 3

Aij = i = 1 α c3/2 −α −c3/2
i = 2 −β −d sin 2ϕ β d sin 2ϕ
i = 3 β c1 + c2 + d sin 2ϕ β c1 − c2 − d sin 2ϕ
i = 4 α d cos 2ϕ α d cos 2ϕ

Bij = i = 1 − −(c1 + 3c2)/2 −β (−c1 + c2)/2
i = 2 − d cos 2ϕ −α −d cos 2ϕ
i = 3 − −d cos 2ϕ −α −c3 + d cos 2ϕ
i = 4 − d sin 2ϕ β sin 2ϕ

of all terms in the function f and calculate the values of
dimensionless coefficients involved in each of them. This
permits us to achieve the final goal of the proposed method:
to construct, from observed oscillations, a system of equa-
tions, the solution of which is provided by these oscillations
themselves.

4. General Dynamic Model of Oscillations
With Provision for the Second Harmonic
of the Carrier Frequency

We now consider in greater detail the situation where the
presence of the second harmonic in the oscillations under
investigation is caused simultaneously by the two factors in-
dicated above. In this case, for the function f(x, y, t), in
view of the normalization at the first stage of the solution of
the inverse problem, we have, instead of (3),

f(x, y, t) = −2αy − (2β + 1)x + c1x
2 + c2y

2 + c3xy

+A sin(t− ϕ0) + d sin(2t− 2ϕ) (16)

A = (α2 + β2)1/2 sin ϕ0 =
β

A
cos ϕ0 =

α

A

The nonlinear contribution to this function is determined by
three dimensionless coefficients c1, c2, c3, and the second har-
monic of the source is characterized by the amplitude d and
by the initial phase 2ϕ. The mean solution x0 of the system
of equations (2), (16) can be found by the method of succes-
sive approximations by assuming that the above parameters
are small in magnitude. Relations for the coefficients of the
Fourier series (12) to a first approximation have the form

a1 = −1.0 b1 = −2b2

a2 = − (c1 − c2)

6
+

d

3
sin 2ϕ b2 =

c3

6
− d

3
cos 2ϕ

ai = 0 bi = 0 i = 3, ...., N

Upon substituting x0(θ) into (7), in view of (16), we ob-
tain formulas for the phase dependencies of the DC Gi(θ).
Since these dependencies are defined by harmonic functions,
it is an easy matter to obtain from them the relations for
the output parameters of the inverse problem Aij , Bij . To a
linear (in the small parameters c1, c2, c3, d) approximation,
they are conveniently represented as the Table 1. Examina-
tion of Table 1 shows that the output parameters with the
harmonic numbers j = 0, 2 are related by the same relations
as in (14). This means that these harmonics of the DCs are
defined solely by the linear part of the function (16) and
by the main mode of the source. At the same time, non-
linear terms and the second harmonic of the source make a
contribution to the fundamental and third harmonics of the
DCs. Furthermore, in the DCs with the numbers i = 2, 4,
as is evident from the table, the fundamental and third har-
monics are caused by the presence or absence of the double
frequency in the source spectrum.

The resulting relations can be taken as the basis for con-
tinuing the solution of the inverse problem. Indeed, the fi-
nal product of the procedure of processing the initial signal,
as shown above, is represented by the parameters Aij and
Bij . Using them, as well as the formulas from Table 1, it
is easy to determine the coefficients of the function (16). In
such a case, the output parameters of the inverse problem
can be considered to be the parameters α, β, c1, c2, c3, d, ϕ
characterizing the form of a function which mathematically
describes, together with the system (2), the deterministic be-
havior of the object that generates oscillations. It is worth-
while to note an important (in our view) property of this
stage of the inverse problem. It follows from the formulas of
Table 1 that each desired parameter can be expressed simul-
taneously in terms of different Aij , Bij which are calculated
in the procedures of the inverse problem independently from
each other. This makes it possible not only to calculate the
values of the parameters but also to establish the fact of
presence or absence of some or other term in the function
(16). Let us consider an example of the output parameters
α and β. To each of them we put in correspondence two pa-
rameters such that one of them is determined from dynamic
coefficients with the numbers i = 1,3, and the other from
the DCs with i = 2,4

α+ =
A10 −A12 −B32

3
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β+ =
A30 + A32 −B12

3

α− =
A40 + A42 −B22

3
(17)

β− =
−A20 + A22 + B42

3

Through a simple substitution it is easy to check that if
Aij , Bij are defined by the formulas from Table 1 which de-
pend only on the form of the function f(x, y, t), then the
parameters in the chosen pairs coincide. This suggests an
important (for the inverse problem) conclusion: the coinci-
dence of the parameters in the pairs is a necessary indication
that the linear dependence on the arguments of f(x, y, t) is
the same as in (16) and that the inhomogeneity of the func-
tion is caused by the harmonic source. To put it a different
way, the oscillations under investigation should be referred
to the type of forced oscillations of the attenuating oscillator.
In order for this indication to be, in addition to necessary,
also sufficient, one should prove that for the other types of
oscillations the parameters in the pair of (17) must not co-
incide. Consider free oscillations and self-oscillations. They
are characterized by the homogeneity of the unperturbed
system of equations (1). This means that the function f
does not depend on time explicitly, and its partial deriva-
tive ft is zero. Taking into account this factor in the rela-
tions (7), it is easy to check that the dynamic coefficients G2

and G4 identically equal to zero. Since the second param-
eters in (17) are determined from these DCs, it is obvious
that α− ≡ β− ≡ 0. At the same time the first parameters
depend on the zeroth and second harmonics G1, G3 which
are caused by linear terms in the function f(x, y). They
must have the same form as in the case of forced oscilla-
tions if dissipative processes are taken into account, which
are inherent in any natural system. Hence the first param-
eters in the pairs of (17) are determined by the formulas
from the table and depend on α and β. The frequency mis-
match β for the types of oscillations under consideration is
nonzero, because in free oscillations the carrier frequency
differs from the eigenfrequency by the contribution from the
damping factor and in self-oscillations by nonlinear correc-
tions. Consequently, α+ 6= 0, β+ 6= 0, which indicates
the noncoincidence of the coefficients in the pairs of (17) for
free oscillations and self-oscillations. As far as parametric
oscillations are concerned, the function f for them is explic-
itly time-dependent. However, it follows from the relations
(7) that this dependence does not make any contribution to
the zeroth and second harmonics of the dynamic coefficients
G2, G4. Hence, as in the preceding case, the parameters in
the pairs must not coincide. Thus the considerations pre-
sented above permit us to formulate the final conclusion:
the coincidence of the parameters of the inverse problem in
the pairs of (17) is a necessary and sufficient indication of
the fact that the oscillations under investigation refer to the
type of forced oscillations of an attenuating oscillator.

For each of the remaining output parameters c1, c2, c3,
d cos ϕ, d sin ϕ, we arrange in a similar manner each own pair

c+
1 =

−B11 − 3B13

2
c+
2 =

B13 −B11

2

c+
3 = −A11 −A13

c−1 =
A31 + 3A33

2
c−2 =

A31 −A33 −B41 −B43

2

c−3 = −B31 −B33 (18)

dc+ =
B21 + A41

2
ds+ =

B41 −A21

2

dc− =
A43 −B23

2
ds− =

A23 + B43

2

For them, as done for (17), we can prove that the coinci-
dence of the parameters in any one of the pairs can serve as a
reliable indication of the fact that the function (16) involves
a term proportional to the corresponding output parameter.
This means that if, for example, the parameters c+

1 , c−1
obtained by processing the oscillatory process using the pro-
cedures of the inverse problem are found to be identical, then
the term c1x

2 must be involved in the function f(x, y, t) of
model equations (2) for these oscillations.

Thus our proposed method provides a means to recon-
struct the function f(x, y, t) from the output signal. How-
ever, its practical implementation involves certain difficulty
which should be taken into consideration. The point here
is that, as shown above, the output parameters Aij and Bij

are calculated in inverse problem procedures with a certain
uncertainty which increases with a decrease of the number
of oscillations in the output signal interval that is processed.
For regular geomagnetic pulsations, even in the most favor-
able stationary regime of generation, it is difficult to detect
the interval containing more than a few tens of oscillations.
The parameters in the pairs of (17), (18) in this case become,
to a certain extent, random quantities, and their simple al-
gebraic comparison loses its meaning. Rather, it is necessary
to use comparison rules employed for random numbers [see,
e.g., Hudson, 1964]. To do so, one should select and pro-
cess at a time many intervals of oscillations referring to a
single process. This will make it possible to create a sample
of random quantities (17), (18) which can be used to de-
termine the correlation coefficients K of the parameters of
each pair. It follows from formulas (17), (18) that whenever
the parameters in a pair must coincide, they are both equal
to one of the output parameters. This means that a linear
functional connection occurs between them. The correlation
coefficient in such a case must assume values close to unity.
And, on the contrary, if the numbers in a pair are defined
by different formulas, then a change of one of them is in no
way associated with a change of the other. Consequently, no
functional connection exists between them, and the correla-
tion coefficient must be zero. Thus large values of K can be
chosen as one of the criteria of coincidence of the parameters
in the pair. We now introduce a generalized designation a
and b for the numbers in the pair. If input information for
the solution of the inverse problem is provided by a limited,
selective interval of the oscillatory process, then each of them
can be represented as the sum of the determined and random
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terms a = d+ ã, b = d+ b̃, where d is a general designation of
the corresponding output parameters, and ã and b̃ are sta-
tistically independent random numbers. It is obvious that if
d = 0, then for such a pair K = 0. If the situation is the re-
verse, i.e. when ã = b̃ = 0, we have K = 1. This means that
if the error of determining the parameters of the pair by far
exceeds the value of the output parameter corresponding to
this pair, then the correlation coefficient between them can
be not very high even in the case where determined terms in
each of them are identical. Therefore, as one further crite-
rion, we chose the quantity T characterizing the ratio of the
parameters of the pair which is determined by the formula
T = 2ab/(a2 + b2). It is easy to understand that in the case
of a statistical coincidence of a and b the distribution of T
must have a maximum when T = 1. Thus, if this condition
is satisfied and, besides, if the correlation coefficient has a
value close to unity, it can be stated with confidence that the
parameters of the pair of random numbers are statistically
identical.

To conclude section 4, we discuss some details of the
proposed method of fluctuation modeling of oscillatory pro-
cesses. The relations (17) give us indications which permit
us to determine the cause of the generation and the dy-
namics of development of the oscillatory process, i.e. they
determine the type of oscillations. Indeed, if the parame-
ters in the pairs coincide, then the oscillations should be
considered forced. If, however, no coincidence is observed,
then using the scheme of reasoning described above, one can
form similar pairs of parameters for other types of oscilla-
tions (parametrical, self-oscillations, etc.). Upon determin-
ing in which particular pairs the parameters are identical,
we obtain the answer to the question: To what type do the
observed oscillations refer? This, in turn, establishes auto-
matically the basic, linear structure of the function f(x, y, t)
of model equations (2). As soon as the form of the function
has been established, it is easy to determine the numerical
values of the coefficients of its terms. Note that these co-
efficients can not always be the final goal of the proposed
method. Often, especially in problems of investigating the
new properties of geomagnetic pulsations, the more impor-
tant issue is to determine the type of oscillations and the
structure of the desired function. As far as the relations
(18) are concerned, they, unlike (17), give indications of the
presence or absence of terms of the function which distort
only slightly the form of the output signal. They can be
involved in the function f(x, y, t) (and may not be involved)
for oscillatory processes of any type. All depends on whether
the parameters of the corresponding pair of (18) coincide or
not.

5. Application of a Statistical Modeling
Technique to the Analysis of Pc1
Geomagnetic Pulsation

To test the effectiveness of the method described above,
we chose geomagnetic Pc1 pulsations as the object of study,
because records just of these pulsations can provide favorable

material for a processing. The properties and characteristics
of Pc1 are given, for example, by Guglielmi and Pokhotelov
[1996]. Mention should be made also of Alpert and Fligel
[1985], who found small spectral multiples to the carrying
frequency in Pc1 spectrum. A phase-portrait method was
used to investigate a second harmonic of Pc1 spectrum by
Kiselev and Kozlovskii [1989].

When selecting the intervals suitable for a processing,
we used records of the geomagnetic field in the frequency
range 0.2–3.0 Hz from station Batagai, East Siberia, Russia
(Φ = 57◦, Λ = 191◦). The selection criteria are rather sim-
ple and follow from the main principle of the method used:
pulsations in the interval selected for the analysis must not
contain amplitude and phase slips, and must include as many
oscillations as possible, because this determines the accuracy
of determining the output parameters of an inverse problem.
Oscillation slip means a small-scale kink at the phase plane.
For Pc1 pulsations their amplitude modulation is the charac-
teristic feature. However, providing amplitude changes are
slow as compared to the oscillation period this modulation
has little or no effect on the output parameters. An example
of such a suitable interval is illustrated by Figure 2.

By adhering to this criterion, we selected about 150 in-
tervals of Pc1 pulsations, each of which contained from 10
to 20 oscillations. A preprocessing implied digitizing mag-
netic analog records with the sampling rate of 20 Hz. Sub-
sequently, the numerical set of each interval was processed
sequentially, following all procedures of the method that
has been described in detail in the first part of this pa-
per. As the output result for each interval of Pc1, we ob-
tained 28 values of the parameters Aij , i = 1, 2, 3, 4 j =
0, 1, 2, 3; Bij , i = 1, 2, 3, 4 j = 1, 2, 3. From them,
using the relations (18) and (19) we formed samples of
pairs of numbers corresponding to the output parameters
α, β, c1, c2, c3, d cos ϕ, d sin ϕ. Each sample has the size equal
to the number of processed intervals. Finally, for each pair
we determined the correlation coefficient K between its pa-
rameters, and the array of values of the quantity T which, it
must be recalled, characterizes the ratio of the parameters of
the pair. In what follows, in order to distinguish these char-
acteristics for different pairs, we shall assign to them the
lower index of the corresponding output parameter. These
characteristics must permit us to determine in which pairs
the parameters are statistically identical and in which they
are not identical, and on this basis, to draw the conclusion
about the structure of the function f of governing model
equations (2) for Pc1 pulsations.

We shall analyze the results obtained starting from the
parameters defined by (17). For illustrative purposes, Fig-
ures 3a and 3c plot the mutual dependencies of the parame-
ters in the pairs. One can notice that the position of points
on both plots indicates a rather high degree of linear de-
pendence of one parameters on the other. This is confirmed
by the values of the correlation coefficients Kβ = 0.87 and
Kα = 0.66. Besides, the distributions of Tβ and Tα, plot-
ted in Figures 3b and 3d, have clear maxima corresponding
to the values of Tα = 1.0 and Tβ = 1.0. All this indicates
that the parameters in the pairs of (17) statistically coincide
for the sample of Pc1 pulsations under consideration. Con-
sequently, the necessary and sufficient condition is thereby
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Figure 2. An example of the selected Pc1 emission time series.

satisfied, according to which these pulsations should be re-
ferred to the type of forced oscillations of an attenuating
oscillator.

Let us consider the results of calculations for the pairs
of (18) which are responsible for the presence or absence
of nonlinear terms in the function f . Since the parameters
of these pairs are found to have similar properties, we use
only one of them in the analysis. Figure 4a plots c+

1 versus
c−1 . This dependence represents an ensemble of uniformly
arranged points which does not have any well-defined direc-
tion. The correlation coefficient for this pair Kc1 = 0.13.
For the other pairs, it has also small (in magnitude) val-
ues Kc2 = −0.11 and Kc3 = 0.25. The distribution of Tc1 ,
plotted in Figure 4b, is almost uniform and does not have
a clear maximum at all. This means that the parameters
in the pairs under consideration do not coincide statistically
and are independent random quantities caused by the error
in calculating the output parameters of the inverse problem.
Consequently, nonlinear terms in the function f are absent
in the system of governing equations (2) for Pc1 pulsations.

The conclusion drawn here means that the second har-
monic of the carrier frequency involved in Pc1 pulsations,
if it exists, must be caused by the second harmonic in the

source. To check that this is the case, we now consider the
results of calculations for the two last pairs in (18). The
distribution of Tdc, as is evident from Figure 4d, has a suffi-
ciently clear maximum around unity, and the dependence of
dc+ on dc−, plotted in Figure 4c, is characterized by the cor-
relation coefficient Kdc = 0.63. For the pair corresponding
to the output parameter d sin φ, the results obtained were
similar, because the peak of the distribution of Tdc lies near
unity, Kds = 0.58. Note that not so high (as one would like)
values of the correlation coefficients can be caused, as shown
above, by the small value of the parameter d, even when the
parameters in the pairs coincide statistically. Refined crite-
ria of coincidence in this case are represented by peaks in
the distributions of Tdc and Tds. Since these distributions
have clear maxima and, besides, the values of Kdc and Kds

are indeed much higher than the correlation coefficients of
the first three pairs of (18), we can be confident that the
parameters in the pairs under consideration are statistically
identical. This means that the source of Pc1 pulsations has a
small (in amplitude) second harmonic. The result obtained
contradicts to the one presented by Kiselev and Kozlovskii
[1989], who related the Pc1 second harmonic to wave prop-
agation in a non-linear medium.
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Figure 3. Illustration of the characteristics of the functional connection of parameters in the pairs of
(17): (a) and (c) mutual dependence of the values of parameters; (b) and (d) distributions of Tβ and Tα

which characterize the value of the ratio of parameters in the pairs. N is the number of sample events
of Pc1 intervals.

6. Discussion of Results

So, in sections 2–5 it was shown that Pc1 pulsations can be
well described by the model of attenuating oscillator which
is presented by the system of equations (2) and (16) with
c1 = c2 = c3 = 0. At this point, however, it is neces-
sary to point out an important factor. Strictly speaking,
the model of oscillator describes the systems with lumped
parameters like a pendulum or an oscillating circuit. In the
near-terrestrial plasma we are concerned mainly with sys-
tems having distributed parameters. For such systems a
resonator or waveguide are the analogues of oscillator. Inas-
much as Pc1 pulsations are generated and propagated in the
magnetosphere and ionosphere they would be more properly
classified as forced oscillations of a resonator or a waveguide.
At the present time we are developing a model of resonator
with attenuation on which to analyze in detail fluctuation
characteristics of Pc1. First, positive results have been ob-
tained already. However we are confident that preliminary
conclusions on the properties of a waveguide or resonator
which forms Pc1 features can be made just now starting

from the oscillator model (2),(16) and considering the eigen-
frequency involved in the coefficient β as just one value from
the infinite series of the oscillatory normal mode frequencies.

Let us try to find out what frequencies of normal modes
are specific to a resonant structure that imprints on fluctu-
ation properties of Pc1 oscillations. To do this, using the
relations (15) we calculated the values of ω0 for all inter-
vals of the sample. Results are presented in Figure 5b in
the form of a histogram of the distribution. For compari-
son, Figure 5a plots the distribution of observed frequencies
ω. Note that when selecting the intervals, their frequency
was in no way specially checked upon. As may be seen from
the figure, the frequency values broke up into two groups:
high-frequency, and low-frequency. It can be noticed, how-
ever, that relative changes of the number of cases for dif-
ferent frequencies are small, i.e. the distribution in groups,
especially in the low-frequency one, can be considered uni-
form. In the ω0 distribution, however, three equally spaced
peaks are evident. This can mean that the peaks corre-
spond to normal modes of the required resonator or waveg-
uide, and the interval between neighboring frequencies ∆f
is about 0.2 Hz. Let us assume that the spectrum of normal
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Figure 4. Characteristics of the functional connection of parameters in the pairs, corresponding to the
coefficients c1 and d cos ϕ of the master equation for Pc1 pulsations: (a) and (c) mutual dependence of
the values of parameters; (b) and (d) distributions of the values of Tc1 and Tdc which characterize the
ratios of parameters in the pairs. N is the number of sample events of Pc1 intervals.

mode frequencies is equidistant, fn = nf1. If so, a relation
δf = fn+1− fn = f1 is bound to hold for all harmonic num-
bers n. Then we can make an estimate of the main mode
frequency of the resonator or waveguide (its fundamental fre-
quency): f1 = ∆f ' 0.2 Hz. Such a value is obviously too
high for the first harmonic frequency of the magnetic shell
which can be considered as the resonator for ion cyclotron
waves [see Alpert and Fligel, 1985]. At the same time it is
in good agreement with the cut-off frequency of ionospheric
waveguide. It is unlikely that the obtained fundamental fre-
quency can be connected with the classical waveguide formed
by F2 layer of the ionosphere [Manchester, 1970] because it
is a refractive waveguide, it can not hold waves propagating
at normal angle to its axis. So it has a cut-off frequency,
but has not a fundamental one. However, the literature con-
tains examples of other resonant structures in the ionosphere
like the ionospheric Alfvén resonator [Demekhov et al., 2000,
Pokhotelov et al., 2001], which can execute forced oscillations
recorded as Pc1.

7. Conclusion

The main conclusions of this study may be summarized
as follows:

1. We have suggested a new method for investigating sta-
tionary oscillatory processes based on analyzing amplitude

and phase fluctuations. The method makes it possible to de-
termine (having the interval of a recording of the oscillatory
process as initial information) the structure of differential
equations controlling this process, as well as the numerical
values of coefficients of all terms involved in them.

2. The possibilities of the method are illustrated by con-
sidering geomagnetic Pc1 pulsations. It is shown experimen-
tally that these pulsations, when observed on the ground,
have properties which are consistent with that of forced os-
cillations of some resonating structure. The frequency of
the main normal mode is determined: f1 ' 0.2 Hz. Most
likely the nature of this resonating structure relates to the
ionosphere.

3. It has been found that within the framework of the
adopted approach the second harmonic of the carrier fre-
quency of Pc1 observed on the ground is caused by the
second harmonic of magnetospheric emission acting on the
waveguide and is not the consequence of the nonlinear regime
of forced oscillations. Master equations for these pulsations
should be considered to be the system (2), (16), in which it
is necessary to take into consideration that c1 = c2 = c3 = 0.
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