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Abstract. In this paper, the coherent nonlinear interaction of three and four electrostatic
Farley-Buneman waves is considered analytically and numerically. The evolution of the
nonlinear waves is described by a system of magnetohydrodynamic (MHD) equations. It
is shown that the interaction of the three or four coherent waves is the main physical
mechanism that leads to the saturation of the Farley-Buneman instability. Through the
interaction of the coherent waves, nonlinear waves and nonlinear structures are generated
when the waves are damped linearly and propagate perpendicular to the electron drift
velocity. This wave region corresponds to large aspects and flow angles of the small-scale
waves. Further, the wave interaction causes a nonlinear stabilization of the growth of the
high-frequency waves. Density modifications of the charged particles during the nonlinear
stage of wave growth are also estimated.

1. Introduction

The auroral radio scatter experiments EISCAT and
STARE reveal that in the E region of the auroral ionosphere,
rather intensive electrostatic structures form, that are con-
nected with an essential modification of the density distri-
bution of the charged background particles. According to a
widespread point of view, these plasma structures can be a
consequence of the excitation of the modified two-stream or
Farley-Buneman (FB) plasma turbulence. The linear the-
ory of the FB instability effectively explains many of the ob-
served phenomena of radar echoes, including the conditions
necessary for the onset of the FB waves. But in spite of the
theoretical and experimental research successes in auroral
radar scattering, many problems yet exist in understanding
the experimental data.
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A central question of the research of the irregularities in
the auroral E region ionosphere are the echoes at large an-
gles with respect to the electron drift velocity in the plane
perpendicular to the geomagnetic field (“large flow angle”)
and the echoes at a few degrees off the perpendicular plane
(“large aspect angle”). The theoretical explanations of these
effects are very difficult and controversial. Attempts to solve
the problems were made by considering refraction effects
[Uspensky et al., 1994], effects due to strong currents and
anomalous resistivity [Hamza and St. Maurice, 1995; Volose-
vich and Liperovsky, 1975], resonance broadening [Robinson
and Honary, 1990; Sudan, 1983], and mode-coupling [Otani
and Oppenheim, 1998; Schlegel and Thiemann, 1994].

Many efforts have already been made to investigate the
nonlinear evolution of FB waves analytically [Hamza and St.
Maurice, 1993; Sahr and Fejer, 1996; Sudan, 1983] and by
computer simulations [Fedorov, 1988; Janhunen, 1994; New-
man and Ott, 1981; Oppenheim and Otani, 1996; Schlegel
and Thiemann, 1994].

In this paper, the coherent nonlinear interaction of three
and four FB waves is considered analytically and numeri-
cally. The evolution of the nonlinear waves is described by
a system of connected MHD equations for the amplitudes of
the interacting waves.
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2. Theoretical Model

According to classical linear theory, in collisional plasmas
with magnetized electrons, νe � ωce, and non-magnetized
ions, νi � ωci, (νe, νi are the collision frequencies of the
electrons and the ions with the neutral particles; ωce, ωci
designate the electron and ion gyrofrequencies), the FB in-
stability may occur in the presence of electrostatic fields.
The dispersion equation of linearly growing waves with fre-
quency ω < νe, νi reads [Volosevich and Galperin, 1997]

ω =
k v0e

1 + ψ(1 + k2
‖ω

2
ce/(k2

⊥ν
2
e ) + ηik2)
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ηi is the ion dynamical viscosity, αη designates a dimen-
sionless constant depending on the type of collisions in the
plasma (within theory – depending on the type of cho-
sen collision integral), k‖ and k⊥ are the components of
the wave vector k parallel and perpendicular to the mag-
netic field B = B0ez, v0e is the electron drift velocity, and
vti = (2Ti/mi)

1/2 is the thermal velocity of the ions. Ti
represents the ion temperature in Boltzmann constants kB ,
and mi is the ion mass.

From the linear theory, one can conclude that the con-
dition for the frequency of the FB waves ω < νi is not
satisfied if the irregularities have scales L < 2πv0e/νi (at
altitudes of h ≈ 100 km above the surface of the Earth, at
which νi ≈ 2 × 103 s−1 and v0e ≈ 6 × 102 m s−1, it follows
L < 2 m). Besides, in the upper E region, plasma condi-
tions with ω ∼> νe are also possible. In the works [Lee et
al., 1971; Schlegel and Thiemann, 1994], it was found that
linearly growing wave modes excited by electron-neutral col-
lisions have a frequency ω < ωc, ω

2
c = ωceωci.

Further, considering the action of neutral winds in the
E region, it was shown that the dispersion relation of lin-
ear FB waves has three solutions [Liperovsky et al., 1996;
Meister, 1995]. Two wave modes are damped, and the third
mode which has frequencies about one order smaller than the
frequencies of the damped waves, is linearly unstable. The
unstable mode has wavelengths k of about 1/m∼< k ∼< 70/m,

and the maximum growth rates amounting to about 400 s−1

occur at k ≈ 27/m< 1/rD ≈ 100/m (rD is the Debye ra-
dius). The phase velocity at maximum wave growth was
about 500 ms−1. The unstable growing wave mode was ex-
cited if both electron-neutral collisions and an electron drift
were present. In sporadic E regions, the electron drift v0e

may be generated by neutral winds.
When kinetic effects are taken into account, such as Lan-

dau damping at the ions, the interval of possible values of
the wave number k is limited. Within the frame of MHD,
Landau damping at the ions is equivalent to the consider-
ation of dynamical viscosity in the dispersion equation of
the waves [Gershman et al., 1984; Volosevich and Galperin,
1997]. Given the kinetic description, [Volosevich, 1978], it
follows that the FB instability can be excited if the condi-
tions ω > νi and ω ∼< νe are satisfied. Under the condi-

tion ω > νe, instead of FB modes, lower-hybrid waves with
ω ≈ ωc may occur.

Commonly, the condition of coherent interaction of three
waves with frequencies ω, ω1, and ω2 and wave vectors k,
k1, k2 is written in the form [Tsytovich, 1970, 1971; Weiland
and Wilhelmsson, 1977]

k = k1 ± k2 (2)

ω = ω1 ± ω2 (3)

In the case of two-dimensional interaction of three waves
(|k|, ϕ), (|k1|, ϕ1), (|k2|, ϕ)2, from (2) follows [Volosevich et
al., 1982]

k1 = k
sin(ϕ2 − ϕ)

sin(ϕ2 − ϕ1)
(4)

k2 = k
sin(ϕ− ϕ1)

sin(ϕ2 − ϕ1)
(5)

If one takes into account the weak dispersion of FB waves,
one finds in the case ϕ = 0 from (4) and (5) and the condition
ω = ω1 + ω2 that

tanϕ1 tanϕ2 = −3 (6)

The physical sense of the last relation lies in the fact that
if two waves in the stage of linear generation with ϕ = 0
and ϕ1 < 10◦ act via decay interaction, then the third wave
must be in the region of linear damping with ϕ2 → π/2.

Considering the system of equations consisting of the con-
tinuity equations of the particles, the MHD momentum bal-
ances and the Poisson equation for the electric field, neglect-
ing in the electron momentum balance the inertial term, as-
suming quasineutrality ne = ni = n, and assuming potential
electric field fluctuations with small amplitude E = −∇ϕ,
one has for the time derivatives of the high-frequency den-
sity variations [Volosevich and Meister, 2000a; Volosevich et
al., 1982]

dnk

dt
+Aenk +Beϕk + Sek = 0 (7)

dnk

dt
+Aink +Biϕk + Sik = 0 (8)

Here nk = N/N0. nk and ϕk are the disturbances of the
density of the charged particles and the electrostatic poten-
tial.
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Ω(k) is the frequency of the density variations with large
time scales, δ(k − k1 − k2) is the delta function, and v0e

and v0i are the electron and ion drift velocities that are
determined by the mean electrostatic field E0. Sek and Sik
are the coefficients of the nonlinear wave interaction of F–B
waves. Within the linear theory, Sek and Sik equal zero.
Then ϕk is proportional to nk. From (7) and (8) follows

ϕk =
Ae −Ai
Bi −Be

nk (21)

Further, substituting (21) into (13) and (14), the interac-
tion coefficient of second order with respect to the nonlinear
contributions S

(2)
k,k1,k2

is found, and so on. S
(2)
k,k1,k2

coin-
cide with coefficients for decay processes given by Tsytovich
[1970, 1971] and with coefficients occurring within the syn-
chronism conditions of nonlinear optics. Results obtained
in third order with respect to nonlinearity are presented in
Volosevich and Meister [2000b].

Substituting (21) in (7) and (8) and taking S(2) and S(3)

in (7) and (8) into account, the expressions for the ampli-
tudes of the waves in third order with respect to the nonlin-
earity read
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where Nj = nkj/n0 are disturbances of the density of
charged particles due to the waves number j (j = 0, 1, 2).
γlkj

and Γnlj designate the linear and nonlinear increments
of the interacting waves,

Γnl0 = Re

2∑
j=0

α0jIj Γnl1 = Re

2∑
j=0

α1jIj (28)
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∗
j α1j = S1S

∗
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∗
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and

δωnli = Im

2∑
j=0

αijIi (30)

is the nonlinear frequency shift, vd = v0e − v0i, Ωkj is the

frequency of the density variations,

I0 = 〈nkn
∗
k〉 I1 = 〈nk1n

∗
k1〉 I2 = 〈nk2n

∗
k2〉 (31)

The system (22)–(24) describes the interaction of four
waves. In the relations (22)–(24), one sees the coefficients
S(2) and not S(3), which describes the interaction of four
waves (the moment of the fourth wave may be expressed by
the momenta of the first three waves using the momentum
balance of four coherent waves). Instead of S(3), Γnlk and
δωnl0 occur. Thus, the physical sense of the system (22)–
(24) consists in the fact that, taking into account nonlinear
effects of third order, the nonlinear wave interaction causes
a nonlinear contribution to the growth rate and a nonlinear



154 volosevich and meister: coherent nonlinear interaction

Figure 1. Evolution of the amplitudes ρ0, ρ1, ρ2 of three
interacting waves as a function of time t. The parameters
of the waves are k = 5 m−1, k1 = 5.14 m−1, k2 = 2.2 m−1,
ϕ0 = 0, ϕ1 = 25◦, ϕ2 = −81.1◦, ω0 = 1.97 kHz, ω1 =
1.784 kHz, ω2 = 146.3 kHz, γl0 = 51 s−1, γl1 = −4.32 s−1,
γl2 = −11 s−1, β0(t = 0)=β1(t = 0)=β2(t = 0). The plasma
parameters are νe = 2 × 104 s−1, νli = 2 × 103 s−1, cs =
350 m s−1, vd = 450 m s−1.

frequency shift. These phenomena result in the stabilization
of the instability.

Further,

Ni = ρie
iβi and Si = i|Si|eiψi i = {0, 1, 2} (32)

are supposed, and the set of equations (22)–(24) is divided
into real and imaginary expressions.

In the case of the low-frequency waves with ω � νi,
|Re Si| � |Im Si|, the main effect of the wave interaction is
the nonlinear phase shift. But for the high-frequency waves
with ω > νi and |Re Si| ≈ |Im Si|, nonlinear frequency shift
and nonlinear contributions to the growth rate are of impor-
tance, and these nonlinear effects lead to the stabilization of
the instability.

The system of equations (22)–(24) was solved numerically

Figure 2. Evolution of the amplitude of the initially lin-
early damped wave j = 2 for wave and plasma parameters,
see caption of Figure 1.

Figure 3. Evolution of the relative phase θ = β1 + β2 − β0

of three interacting waves as function of time t. For wave
and plasma parameters, see caption of Figure 1.

using the Runge-Kutta method and considering initial con-
ditions near stable states. Applications were done for con-
ditions with an unstable high-frequency wave (γl0 > 0), and
two other linearly damped waves (γl1, γ

l
2 < 0) (“large aspect

angle” or “large flow angle”).
Examples of the numerical solution of (22)–(24) are pre-

sented in Figures 1–5. Figure 1 shows the temporal evolu-
tion of the relative amplitudes ρ0, ρ1, ρ2 of the density waves
with j = 0; 1; 2 with respect to the background density for
k = 5 m−1 (in Figure 5, k = 1 m−1 is considered). The time,
t, is measured in seconds. In the initial state at t = 0, the
high-frequency wave j = 0 is unstable and the low-frequency
wave j = 2 is damped as ϕ2 ≈ π/2. If ρ1 and ρ2 are small,
the amplitude ρ0 grows exponentially. But with the time,
if the amplitude ρ0 will be large enough, the amplitudes ρ1

and ρ2 also increase by nonlinear interaction. The ampli-
tude of the linearly damped wave 2 and the relative phase
of the waves θ = β1 + β2 − β0 are shown in Figures 2 and 3,
respectively. Nonlinear stabilization occurs if the time of the
linear increase of the amplitude ρ0 of the unstable wave 1/γl0
is smaller than the time of the nonlinear interaction τnl. In
the contrary case, the explosive instability may be excited.

From Figures 1–3 follows, that under the condition that
the initial relative amplitudes of the waves are small (about
10−3), then, for some time, the amplitude of the linearly
unstable wave grows, and the amplitudes of the initially
damped waves are small. But, if the amplitude of the un-
stable wave has grown up to a sufficient level, the nonlinear
interaction results in an increase of the amplitudes of modes
1 and 2. This process leads to a quasi-stabilized state, the
amplitudes of the interacting waves behave almost periodi-
cally, and the relative phase θ approaches a constant value.
When the quasi-periodic state is established, the amplitudes
of the initially linearly damped waves are larger than the
amplitude of the initially linearly growing wave. The stabi-
lization of the waves at a finite amplitude is accomplished
by modifying of the linear growth rate. It depends on the
average wave fluctuation level and lasts until the nonlinear
growth rate balances the linear growth rate.

The numerical simulations for large intervals of the pa-
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rameters of the interacting waves showed that the solving
the system of equations (22)–(24) depends on the wave pa-
rameters and the parameters of the ionosphere. The solution
may be stationary, periodic, multi-periodic, quasi-stochastic,
and stochastic. In Figure 4, results for the nonlinear inter-
action of waves with strong decay of the waves j = 1, 2 are
presented. In such a case, the solution is similar to a stochas-
tic one [Vysshkind and Rabinovich, 1976; Wersinger et al.,
1980]. It depends on the initial conditions and the relative
phase θ of the waves’ increases slowly with the time.

3. Conclusions

The nonlinear interaction between high-frequency and
low-frequency modes, excited by the FB instability in the
collisional ionospheric E region during the linear stage of
wave generation, is considered within the frame of MHD.
Taking the MHD system of equation contributions of third
order with respect to the nonlinearity into account, a self-
consistent system of equations for the amplitudes and phases
of three interacting waves is derived. The results of the nu-
merical solution of the system of equations allows us to make
the following conclusions:

1. If in the ionospheric plasma FB waves with linearly
increasing amplitudes exist, then the most intensive wave
interaction occurs in the propagation cone around the elec-
tron drift velocity with an angle of about ϕ ∼> arccos |v0e/cs|
(v0e is the electron drift velocity, cs represents the sound
velocity). The wave interaction results in the generation of
rather intensive waves that propagate perpendicularly to the
electron drift velocity.

2. If the plasma system is in the weakly supercritical

Figure 4. Evolution of the amplitudes ρ0, ρ1, ρ2 of three
interacting waves as function of time t. The parameters of
the waves are k = 3 m−1, k1 = 3.168 m−1, k2 = 2.065 m−1,
ϕ0 = 0, ϕ1 = 39◦, ϕ2 = −74.894◦, ω0 = 1.277 kHz, ω1 =
1.043 kHz, ω2 = 232.518 kHz, γl0 = 14 s−1, γl1 = −4.1 s−1,
γl2 = −9.319 s−1. The plasma parameters are νe = 2 ×
104 s−1, νli = 2× 103 s−1, cs = 350 m s−1, vd = 450 m s−1.

Figure 5. Evolution of the amplitudes ρ0, ρ1, ρ2 of three
interacting waves as function of time t. The parameters of
the waves are k = 1 m−1, k1 = 1.001 m−1, k2 = 0.087 m−1,
ϕ0 = 0, ϕ1 = 5◦, ϕ2 = −88.3◦, ω0 = 435 Hz, ω1 = 326.2 Hz,
ω2 = 7.926 Hz, γl0 = 9.328 × 10−3 s−1, γl1 = −0.053 s−1,
γl2 = −3.465 × 10−3 s−1. The plasma parameters are νe =
2×104 s−1, νli = 2×103 s−1, cs = 350 m s−1, vd = 450 m s−1.

regime with electron drift velocities of the order of 1.1 sound
velocities, the explosive instability may also occur. This
means that, under such conditions, the interaction of four
waves is not effective. With increasing level of supercritical-
ity, the effectiveness of the three- and four-wave interactions
grows.

3. If the case that the previously linear waves have wave-
lengths of the order of 1–5 m, the amplitudes of the waves
beyond the linear region of evolution are of the order of
6% of the mean density, and the amplitudes of the nonlin-
ear waves increase with increasing wavelength of the plasma
disturbances and with growing electron drift velocity.

4. The nonlinear evolution of FB waves by coherent wave
interaction can result in states of different types: quasi-
stationary states for interacting low-frequency waves, peri-
odic and multi-periodic behavior for high-frequency waves
with ω > νi (Figures 1–3), and quasi-stochastic behavior
(Figure 4). The evolution scenario depends on the plasma
parameters (νe, νi, Te, Ti, v0e) and on the parameters of the
interacting waves (the frequencies and growth rates as well
as the ranges of the aspect and flow angles and the frequency
of the unstable waves).

5. The results obtained may be used to interpret exper-
imental data obtained during auroral radioscatter experi-
ments.
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