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Variations in the rigidity spectrum and anisotropy of
cosmic rays at the period of Forbush effect
on 12–25 July 1982

V. M. Dvornikov and V. E. Sdobnov

Institute of Solar-Terrestrial Physics, Irkutsk, Russia

Abstract. Ground-based cosmic-ray (CR) observational data from a worldwide network
of stations were used to investigate the variation of the CR distribution function and the
changes in geomagnetic cutoff rigidities during the Forbush effect in July 1982. The data
from 42 neutron monitors were employed in this study. The analysis was made by the
method of spectrographic global survey. Using the worldwide network of stations as a
single multichannel instrument, the method makes it possible to determine the parameters
of the rigidity spectrum of CR variation and anisotropy in interplanetary space, as well
as the changes of the planetary system of geomagnetic cutoff rigidities for every hour of
observation. It is shown that at some instances a high degree of anisotropy is observed
(the amplitude of the fundamental and second spherical harmonics is ∼10%–25% and
∼5%, respectively). A bidirectional anisotropy, which is characterized by a deficiency
of particles with large pitch angles, was observed after the passage of regions with an
increased interplanetary magnetic field (IMF) strength during the phase of solar wind
velocity decrease when the Earth entered the IMF structure either with the field orientation
normal to Parker’s spiral or with the field polarity opposite with respect to the background
polarity. Maximum values of the fundamental spherical harmonic amplitudes are observed
in the phase of CR intensity decrease. The phase of the fundamental harmonic is orthogonal
to the IMF vector. The variations have a very hard spectrum, and the spectral index is
∼0.4–0.5 in the main phase of the Forbush effect. A modulation mechanism is suggested,
which permits the results to be explained.

1. Introduction

The problem of determining variations of the cosmic-ray
CR distribution function outside the confines of the magne-
tosphere from ground-based observations presents consider-
able difficulty, and to solve it requires physically adequate
assumptions about the form of the distribution function. All
techniques available to date [Baisultanova et al., 1987, 1991;
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Dvornikov et al., 1983; Krymskiy et al., 1966; Nagashima,
1971; Shea and Smart, 1982] take advantage of the assump-
tions either about the isotropic character of the CR distri-
bution function or about the total separation of angular and
energy variables, or about the separation of these variables
for each spherical harmonic by expanding the distribution
function in terms of spherical harmonics. In addition, the
form of the rigidity dependence of the anisotropy is con-
sidered independent of time and is specified on the basis of
some model for the propagation of particles in interplanetary
space. This paper uses the technique (the method of spec-
trographic global survey (SGS)), the description of which is
given in the section 2.

Using this technique, we investigate a giant Forbush de-
crease of 13–25 July 1982, characterized by significant CR
modulation amplitudes (∼ −20% at the polar stations)
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and accompanied by geomagnetic disturbances with Dst ∼
−300 nT.

2. Analysis Technique and Data

Our method is based on the assumption that the aniso-
tropy in the CR distribution along the directions of the ar-
rival is attributed to a dependence of their intensity on the
pitch angle in the interplanetary magnetic field (IMF) and
to a density gradient at the Larmor radius of particles.

In line with this assumption we will choose two orthogo-
nal axes, one directed parallel (or antiparallel) to the IMF
vector and the other directed to the vector B×∇n⊥, where
B is the IMF vector and ∇n⊥ is the CR density gradient
component transverse with respect to B. We now introduce
a geocentric ecliptic coordinate system with the sunward di-
rected axis OX. The angle between the particle velocity
vector V and B (pitch angle) can then be defined by the
expression

cosΘ = µ = sinλ sinλ0 + cosλ cosλ0 cos (Ψ−Ψ0) (1)

and the angle between V and B ×∇n⊥ is represented by

cosΦ = ν = sinλ sin ξ0 + cosλ cos ξ0 cos (Ψ− φ0) (2)

Here the angles Ψ0 and λ0 characterize the orientation of
the first axis, and φ0 and ξ0 stand for the orientation of the
second axis in our chosen coordinate system. The direction
of motion of a particle is determined by the angles Ψ and λ.

In this case, from the orthogonality condition for the cho-
sen axes, the angle ξ0 can be expressed in terms of the angles
Ψ0, λ0, and φ0,

ξ0 = arctan [− (cos Ψ0 cosφ0 + sinΨ0 sinφ0) cosλ0] (3)

The CR intensity variation amplitudes observed on the gro-
und may be represented by an expression of form [Dorman,
1957]
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Here δIi
c/I

i
c(hli) stands for variation amplitudes of an inte-

gral flux of secondary particles of sort i (with respect to a
certain background level Ii

c) observed at a geographical site
c at level hl in the Earth’s atmosphere; α and β are the az-
imuthal and zenith angles of arrival of primary particles at
the atmospheric boundary; Rc is effective rigidity of geomag-
netic cutoff; W i

c (R,α, β, hl) is the coupling function between
primary and secondary CR variations; and Ψc(R,α, β) and
λc(R,α, β) are the asymptotic angles of arrival of particles;

δRc(Rc) is a probable variation in geomagnetic cutoff rigid-
ity Rc. According to Dvornikov and Sdobnov [1991], depen-
dence of δRc on Rc was approximated by relations of the
form
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are the amplitudes of CR global intensity variations at the
threshold rigidity Rc.

Next, it will be assumed that flux density variations of
primary CR particles are represented by
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where Pn(µ) and Pn(ν) are the Legendre polynomials.
As follows from (5), the CR angular distribution are rep-

resented by two axially symmetric (with respect to the corre-
sponding axis) anisotropy components, each of which has its
own rigidity dependence. Rigidity spectra of the anisotropic
component and of two anisotropy components are approxi-
mated rows from the inverse degree of rigidity.

In the solar-ecliptic coordinate system, expression (5) will
be of the form
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Upon substituting expression (6) into the equation of vari-
ations (4), we obtain the following system of nonlinear alge-
braic equations:
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If in (6) and (7) we confine ourselves to two spherical
harmonics to describe each of the anisotropy components
(N = 2) and if we set M0 = 3 and M1 = M2 = 2, then
the problem is reduced to a search for the following un-
known parameters: b1, b2, a01, a02, a03, c11, c12, c21, c22,
d11, d12, which characterize variations of geomagnetic cut-
off rigidity Rc, differential rigidity variation spectra of the
isotropic component and two components of the first and
second harmonics of the CR angular distribution; Ψ0, λ0,
ξ0, and φ0 determine the orientation of the chosen symme-
try axes.

To solve the above formulated problem, the world stations
network and detector systems there must ensure redundancy
and linear independence of the system of equations (8). In
solving the problem the angles Ψ0, λ0, and φ0 are subjected
to the Monte Carlo method, and the angle ξ0 is inferred from
formula (3). Upon substituting values of the “played” angles
into system (8), we obtain a system of linear equations that
is solved by the least squares technique.

Values obtained for the roots of the system of equations
(8) are used to calculate the amplitude A1(R) and the phase

Ψ1(R), λ1(R) of the first spherical harmonic for particles
with rigidity R by the formulas
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as well as amplitudes and phases of the zonal (m = 0),
tesseral (m 6= n), and sectorial (m = n) components of the
second and the third harmonic:
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where am
n (R) and bmn (R) are defined by expression (7).

As follows from (9) and (10), unlike all existing tech-
niques, in the proposed method the form of rigidity depen-
dencies of the anisotropy is determined for each instant of
time, while phases of the first, tesseral, and sectorial com-
ponents of the second harmonic depend on particle rigid-
ity. When developing the method, we used more than 10
representations of the CR distribution function that reflect
different models for the propagation of particles in the he-
liosphere, but the best agreement with ground-based and
satellite measurements in analyzing the phenomenon under
investigation was obtained for a distribution function of the
form (5). Calculations were based on coupling functions be-
tween primary and secondary CR reported [Lockwood and
Webber, 1967; Webber, 1962; Webber and Quenby, 1959]
(corrected for an 11-year variation) and on asymptotic an-
gles obtained through trajectory calculations [McCracken et
al., 1965; Shea et al., 1965] as well as formulas for transition
to the chosen coordinate system [Dorman, 1975].

The analysis used data from the worldwide network of
neutron monitor stations corrected for pressure and averaged
for 2-hour time intervals [World Data Center C2]. Modula-
tion amplitudes were measured from the background level of
9 July. The data were from 42 neutron monitors, which are
listed in Table 1.

3. Analysis Results

Figure 1 presents the data of space-based in situ measure-
ments of the solar wind (SW) velocity, the IMF modulus in
nT, the angles Ψ and λ, which characterize the orientation of
the IMF vector in interplanetary space for the period under
consideration, the time profiles of variations in global CR
intensity with the rigidity of 4 and 20 GV, the modulus of
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Figure 1. Variations of (a) solar wind velocity, (b) IMF modulus, (c) azimuth angle ψ and (d) lati-
tude angle λ, which characterize the IMF vector orientation in the heliocentric ecliptic reference frame,
(e) variations in global intensity of CRs with Rc = 4 and 20 GV, (f) amplitudes of the modulus of the
first spherical harmonic A1 for the particles with Rc = 4 GV, (g) amplitudes of the tesseral component of
the second harmonic A1

2 for the particles with Rc = 4 GV, and (h) amplitudes of the sectoral component
of the second harmonic A2

2 for the particles with Rc = 4 GV.
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Table 1. List of the Neutron Monitor Stations

Station Geographical Coordinates Altitude, m Cutoff Rigidity, GV

Latitude, deg Longitude, deg

1 Alert 82.50 N 62.33 W 57 0.00
2 Alma-Ata A 43.25 N 76.92 E 806 6.61
3 Alma-Ata B 43.25 N 76.92 E 3340 6.61
4 Apatity 67.55 N 33.33 E 177 0.60
5 Climax 39.37 N 106.18 W 3400 2.97
6 Deep River 46.10 N 77.50 W 145 1.07
7 Dourbes 50.10 N 4.60 E 225 3.24
8 Durham 43.10 N 70.83 W sl 1.57
9 Goose Bay 53.27 N 60.40 W 46 0.60

10 Hermanus 34.42 S 19.23 E 26 4.56
11 Huancayo 12.03 S 75.33 W 3400 13.01
12 Inuvik 68.35 N 133.72 W 21 0.16
13 Irkutsk 52.47 N 104.03 E 435 3.56
14 Irkutsk 2 52.28 N 104.02 E 2000 3.66
15 Irkutsk 3 52.28 N 104.02 E 3000 3.66
16 Jungfraujoch 46.55 N 7.98 E 3570 4.53
17 Kerguelen 49.35 S 70.27 E 33 1.19
18 Kiel 54.34 N 10.12 E 54 2.32
19 Kiev 50.72 N 30.30 E 120 3.48
20 Leeds 53.80 N 1.55 W 72 2.17
21 Lomnicky Stit 49.20 N 20.22 E 2634 4.00
22 Magadan 60.12 N 151.02 E 220 2.11
23 McMurdo 77.90 S 166.60 E 48 0.00
24 Morioka 39.70 N 141.13 E 131 10.05
25 Moscow 55.47 N 37.32 E 200 2.39
26 Mt. Norikura 36.11 N 137.55 E 2770 11.36
27 Mt. Washington 44.27 N 71.30 W 1900 1.38
28 Mt. Wellington 42.92 S 147.25 E 725 1.82
29 Newark 39.70 N 75.70 W 50 2.02
30 Oulu 65.06 N 25.47 E sl 0.77
31 Potchefstroom 26.68 S 27.10 E 1351 6.97
32 Predigtstuhl 47.70 N 12.88 E 1614 4.29
33 Rome 41.90 N 12.52 E 60 6.24
34 Sanae 70.31 S 2.40 W 52 0.91
35 South Pole 90.00 S 0.00 E 2820 0.09
36 Sverdlovsk 56.43 N 60.57 E 300 2.29
37 Tashkent 41.33 N 69.62 E 565 7.47
38 Tbilisi 41.72 N 44.80 E 510 6.66
39 Terre Adelie 66.67 S 140.02 E 35 0.00
40 Tixie Bay 71.58 N 128.92 E sl 0.45
41 Tokyo 35.75 N 139.72 E 20 11.50
42 Tsumeb 19.20 S 17.58 E 1240 9.29

the fundamental spherical harmonic and of the amplitude of
the tesseral (m 6= n) and sectorial (m = n) components of
the second harmonic. Figure 2 presents the variations in ge-
omagnetic cutoff rigidity ∆Rc for Rc = 4 GV together with
the Dst index, and the values of the standard deviations δ of
the observed variation amplitudes from the calculated ones.

Figure 3 (left and right, respectively) shows the depen-
dencies of variations in geomagnetic cutoff rigidity ∆Rc on
the geomagnetic cutoff rigidity Rc obtained from the analy-
sis, and the results of calculations of ∆Rc(Rc) [Dorman and
Tyasto, 1965; Treiman, 1953] for the model of the magne-

tospheric current flowing in a westward direction along the
parallels on a sphere with the force proportional to the lati-
tude cosine [Chapman, 1937].

A maximum modulation amplitude for particles with R =
4 and 20 GV was observed on 14 July to make up ∼−40%
and ∼−20%, respectively. The variations show a very hard
spectrum (the spectral index of the variations γ ≈ 0.4). A
maximum anisotropy amplitude was observed at the period
of a maximum modulation on 14 and 15 July with A1 ∼ 25%,
and A12 and A22 ∼ 5% for particles with R = 4 GV.

The CR intensity distribution with R = 4 GV for the
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times of observation of a maximum anisotropy is presented
in the top panel of Figure 4. Numbers at the contours corre-
spond to the CR intensity variation amplitudes as a percent-
age of the background level. The plus symbols designate the
orientation of the IMF vector at the instants of time under
consideration.

4. Discussion and Conclusions

As is evident from the results presented above, some in-
stants of time of the period under investigation show a bidi-
rectional anisotropy of a large amplitude in the angular dis-
tribution of particles, which suggests, on the one hand, the
presence of structures like a magnetic trap and, on the other
hand, the smallness of the diffusion coefficient in the mo-
mentum space. A combined analysis of the variations of the
CR distribution function and the IMF data intimates that
the bidirectional anisotropy, which is characterized by a de-
ficiency of particles with large pitch angles, is observed after
the passage of regions with an increased IMF strength when
the Earth enters the IMF structures, either with the IMF
orientation normal to the Parker spiral (beginning of 13 and
14–15 July) or with the opposite field polarity with respect to
the background polarity (17 July). This suggests that dur-
ing the period of the concerned event, loop-like structured
magnetic field fluxes are transported away; while traveling
away from the Sun, they drive out the background magnetic
field by deforming it, especially at the leading edge, as shown
in Figure 5.

CRs penetrate into the magnetic trap and escape it thro-
ugh centrifugal and gradient drifts of particles, and the in-
crease in intensity is due to a change in the energy of CR
as they travel in regular electromagnetic fields of the helio-
sphere.

The energy variation of particles ∆E as they travel in
the regular electromagnetic fields E and B can be estimated
within the drift approximation by solving the system of equa-
tions [Morozov and Soloviev, 1963]

dr
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= v‖

B

B
+
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+
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‖
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Here v‖ and v⊥ are the velocity components of a particle
with the mass m and charge e parallel and perpendicular to
the magnetic field B; c is the velocity of light; dr/dt is the
velocity of the center of the Larmor circle; E = (m0c

2)/(1−
v2/c2)1/2 is the averaged energy; and J⊥ = (m2v2

⊥)/(m2
0B)

is the transverse adiabatic invariant.
The first term in equation (11) describes the motion of

the particle along a magnetic field line, and the next three

terms describe, the energy and the centrifugal and gradient
drifts,

If rotE = −(1/c)× (∂B)(∂t) = 0, and

E = −1

c
U×B (14)

where U is the solar wind velocity, and the magnetic field,
according to Parker [1963] have a radial and azimuthal com-
ponent of the form

B(r) = Br(r0)
(
r0
r

)2

Bϕ(r, λ) = Br(r, λ)
Ωr

U
sinλ (15)

where r is the radial distance from the Sun, λ is the helio-
latitude, and Ω is the angular rotation velocity of the Sun;
then by integrating (12), in view of (11), and (13)–(15) we
obtain the expression for the energy variation of particles
∆E in fields of the geometry under consideration [Dvornikov
and Matyukhin, 1976; Dvornikov et al., 1987]

∆Ept =
eΩBr0r

2
0

c
(16)

Expression (16) shows how much the particle energy will
decrease if it has travelled from the pole to the helioequator
in a direction opposite to the electric field E (equation (14)).

The value of ∆E , with the IMF modulus ∼5 nT at the
Earth’s orbit, is ∼200 MeV and is independent either of
the hardness of particles or of their pitch angle in the IMF
because the electric field respectively. in (14) of a stationary,
homogeneous SW is a potential one. Nor does this quantity
depend on the SW velocity as the azimuthal IMF component
in this case is inversely proportional to the SW velocity (15)

Eλ =
1

c
UBϕ = Br(r, λ)

Ωr

c
(17)

In the case where a loop-like structure of a high-speed
solar wind is transported into interplanetary space, the sit-
uation reverses drastically. The electric field can have both
a meridional, Eλ, and an azimuthal, Eϕ, component. The
strength of this field depends on the value of (B2

ϕ + B2
λ)1/2

and on the SW velocity and can exceed by more than an or-
der of magnitude, the magnitude of the electric field caused
by the IMF of a helical geometry. Accordingly, there will be
an increase in energy losses ∆Ept.

The variation in particle energy caused by the vortical
component of the electric field (the second term on the right-
hand side of equation (12)) is defined by the expression

∆Erot = E −
√
β(E2 − ε20) + E2

0 (18)

where β ∝ (B/B0), B0 and B are the strengths of the back-
ground magnetic field and of the variable field, respectively,
and ε is the rest energy.

Besides, Dvornikov and Sdobnov [1997a, 1997b] conjec-
tured that polarization electric fields exist in the heliosphere,
which are produced at the propagation of accelerated parti-
cles in inhomogeneous fields of the heliosphere.
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Figure 2. Variations in geomagnetic cutoff rigidity for Rc = 4 GV and in the Dst index. The bot-
tom panel demonstrates the mean square deviations (δ) of the observed variation amplitudes from the
calculated ones.

Figure 3. Variations in geomagnetic cutoff rigidity ∆Rc versus geomagnetic cutoff rigidity Rc for various
time moments and for various Dst (left-hand panels). At the right-hand panels there are ∆Rc calculated
by the model of the magnetospheric currents flowing westward along the parallels of the sphere and
having values proportional to the cosine of the latitude. The numerals at the curves indicate the distance
to the current shell in terms of the Earth’s radii.
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Figure 4. Relative intensity variations of the CRs with Rc = 4 GV versus asymptotic directions in the
solar-ecliptic frame for different moments of time.

If the perpendicular (to the magnetic field) component of
the polarization electric field Epl⊥ ∼ (v/c)B, and Epl‖ �
(v/c)B, then equation (11) becomes

dr

dt
= u− mc

eB2

[
∂u

∂t
+ (u5)u ·B

]
+
mcv2

⊥
2eB3

B×5B (19)

and the energy E in equation (12) is defined by the ex-
pression E = (m/2)

(
v2
‖ + v2

⊥ + v2
E

)
; u = v‖(B/B) + vE ;

vE = (c/B2)E×B.
The second terms on the right-hand side of equation (19)

is integrated as a drift under the action of the inertial force
m [(∂u/∂t) + (u5)u]

In this case, the variation in particle energy under the
action of the electric field Epl, provided that Epl is a linear

function of time, is represented as

∆Epl = E(1− exp(α/2)) (20)

where α = E2
pl/B

2.
Polarization electric fields can be produced in the case of

large-particle density gradients and a strong inhomogeneity
of the magnetic field. Large-particle density gradients can
arise in coronal loop-like structures of magnetic field when
the magnetic field strength of these structures increases with
time. In this case, cosmic rays are drifting toward the axis
of the current system, which forms a loop-like structure, and
are accelerated by the betatron mechanism; that is, the en-
ergy accumulation process is taking place.

Once critical values of the current are attained, the cur-
rent system can be disrupted, which is accompanied by an
explosive process and hence by an enhancement of the mag-
netic field inhomogeneity, i.e., by the production of condi-
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Figure 5. Hypothetical geometry of a high-velocity flux magnetic field that allows one to explain the
IMF data in combination with the results of the observation analysis.

tions for the generation of Epl. In loop-like structures, a
particle is accelerated up to rigidities R0, at which the Lar-
mor radius of particles is comparable with the typical size of
the acceleration regions.

If it is assumed that the energy variation of particles with
R > R0 in inverse proportion to R, then in the general case,
in the presence of the potential, vortical, and polarization
components of the electric field, the expression for ∆E be-
comes

∆E =



∆Ept + E −
√
β(E2 − ε20) + E2

0

+E(1− eα/2) if R < R0

∆Ept + (E(R0)

−
√
β(E2(R0)− ε20) + E2

0

+E(R0)(1− eα/2))R0
R

) if R > R0

(21)

Thus a particle with the energy E , recorded at the Earth’s
orbit at time ti, has had the energy E+∆Ei outside the helio-

sphere, and the differential rigidity spectrum of the recorded
particles, by Liouville’s theorem, will be described by the ex-
pression

Ji(R) ∝ (E + ∆Ei)
−γ+1(E2 − ε20)3/2

E [(E + ∆Ei)2 − ε20]3/2
(22)

where γ is the spectral index of galactic cosmic rays J(R) ∝
E−γ , and the rigidity spectrum of the variation will be rep-
resented by

Ji

J0
(R) =

( E + ∆Ei

E + ∆E0

)−γ+1
[

(E + ∆E0)
2 − ε20

(E + ∆Ei)2 − ε20

]3/2

(23)

where ∆E0 is the particle energy variation in background
electric fields of the SW.

Figure 6 presents the results of calculations of the rigid-
ity spectrum of the variations (Ji/J0)(R) by formula (23)
in view of (21) for different instants of time when ∆Epl =
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Figure 6. Rigidity spectra of CR variations calculated by formula (23) in view of (21) for the following
values of the parameters: ∆Ept = 1.46, 1.42, 1.31, and 1.31; ∆E1(R0 = 1GV) = −2.25, −2.33, −2.18, and
−2.48; respectively for 2300–2400 UT of 14.07.82, 1300–1400 UT of 15.07.82, 2300–2400 UT of 15.07.82,
and 1500–1600 UT of 17.07.82 (curve 2), and for the same values of ∆Ept, but when ∆E1 = 0 (curve 1).
Triangles are observed variations of the isotropic component of the CR intensity with respect to the
background level on 15 January 1982.

∆Erot = 0 (curve 1) and for nonzero ∆Epl and ∆Erot (curve 2)
for the respective values of ∆Ept. Triangles show the vari-
ation spectra obtained by analyzing ground-based observa-
tions using the SGS method. The findings indicate that the
value of R0 ∼< 2 GV, hence it is impossible to determine the
spectrum parameters α, β, and R0 using only data from neu-
tron monitors without invoking satellite data. In the rigidity
range R > R0, expression (21) has a simplified form

∆E = ∆Ept + ∆E1
R0

R

where

∆E1 = E(R0)−
√
β(E2(R0)− ε20) + ε20

+E(R0)(1− exp(α/2))

In this case, the expression for describing the variation
spectrum involves only two unknown parameters ∆Ept and

∆E1R0, which were determined from observed values of
(Ji/J0)(R) (triangles in Figure 6).

As follows from a comparison of observed and calculated
values of (Ji/J0)(R), the observed spectrum can be ex-
plained by the superposition of the particle deceleration and
acceleration effects along their propagation trajectory from
the Galaxy to the point of observation.

Since the energy variation ∆E1 in vortical and polariza-
tion fields depends on v⊥ and u⊥, the CR intensity vari-
ation amplitudes, caused by these variations, must depend
on the direction of arrival of the particles at the point of
observation, and the anisotropy amplitudes will be deter-
mined by the magnitude of the effect from ∆E1(R0/R) (by
the difference between curves 1 and 2 in Figure 6). Fur-
thermore, depending on the particular region of the IMF
loop-like structure where an acceleration of particles occurs,
either the fundamental or the second spherical harmonics
(bidirectional anisotropy) will dominate. If the acceleration
occurs due to the polarization component of the electric field
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Figure 7. Correlated changes in the direction (top, longi-
tude; bottom, latitude) of the interplanetary magnetic field
at ISEE 3 (B; thin line), and second harmonics of the distri-
butions of 4 GV cosmic ray (thick line) and 1–4 MeV ions
(triangles), during 14–15 July 1982. The data are consistent
with predominately field-aligned bidirectional streaming at
4 GV and 1–4 MeV.

near the point of observation, then the fundamental har-
monic will dominate, with the phase orthogonal to the IMF
vector (for 1300–1400 UT, for example) on 15 June (see Fig-
ure 4). In the case of a particle acceleration at the base of
the loop-like structure, a bidirectional anisotropy with a de-
ficiency of particles in large pitch angles can be observed (see
right-hand panels in Figure 3). It should be noted that the
phase of the CR bidirectional anisotropy can provide infor-
mation about the IMF orientation. For comparison, Figure 7
(taken from a paper [Richardson et al., 2000]) presents the
data on the IMF orientation determined from the bidirec-
tional anisotropy phase of energetic particles and particles
with 4 GV rigidity, as well as the data of in situ measure-
ments of the orientation of the IMF vector.

In addition to providing information about the variations
of the CR rigidity spectrum and anisotropy outside the mag-
netosphere, the method used here makes it also possible to
obtain information about variations of the planetary system
of geomagnetic cutoff rigidities (see Figures 2 and 3). As is
apparent from Figure 2, the time profile of ∆Rc is in good
agreement with that of the Dst index. In the main phase
of the magnetic storm, the value of ∆Rc is ∼1.5 GV when
Rc = 4 GV. The dependence of ∆Rc on Rc, obtained from
an analysis in different phases of the magnetic storm (left-
hand panels in Figure 3), is in qualitative agreement with

results of calculations of ∆Rc(Rc) in terms of the model of
the magnetospheric current distributed across the shell in
proportion to the latitude cosine and flowing in a westward
direction (see right-hand panels in Figure 3). For a quanti-
tative reconciliation, it seems to be necessary to use a more
adequate model of a spatially distributed magnetospheric
current system.

The reliability of information obtained can be assessed by
the degree of correspondence between the geomagnetic cutoff
rigidity variations ∆Rc at Rc = 4 GV and the Dst index
(see Figure 2), and from the correspondence of the observed
IMF orientation with that determined from the bidirectional
anisotropy phase (see Figures 3 and 7), as well as from values
of standard deviations δ of observed variation amplitudes
from calculated ones.
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