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Abstract. The magnetic field frozen into protoclouds appreciably affects the process
of formation and evolution of young stellar objects (YSO). Many effects in the vicinity
of YSO are associated with the magnetic field (e.g., bipolar flows, optical jets). In the
description of magnetohydrodynamic (MHD) phenomena, the concept of a magnetic flux
tube frozen into the plasma flow often plays an important role. We use here a method of
introducing Lagrangian coordinates into the MHD equations, which enables a convenient
mathematical formulation for the consideration of the behavior of a magnetic flux tube.
With the introduction of a Lagrangian coordinate system comoving with the flux tube, the
MHD equations of motion reduce to nonlinear string equations. Therefore the behavior of
flux tubes can be studied through solving these string equations. The behavior of a string
and a free particle in the gravitational field are very different. The gravitational center can
never capture a free particle if the particle has a nonzero impact parameter; the string, on
the contrary, can be captured. Using a numerical simulation for solving the MHD equation
system in the vicinity of the gravitational center, we found out that two different kinds of
motion exist. The first is capture of the string by the gravitational field, and the second is
free string motion. We investigated also the influence of the reconnection process on the
string motion in the vicinity of the gravitational center. It tuned out that the reconnection
process can change the kind of string motion.

Introduction

It is well known these days that a star originates as a result
of the collapse of interstellar clouds of magnetized molecular
gas. Thus the process of star formation depends on the prop-
erties of a protostellar cloud, and to understand this process,
we need to consider the accretion of magnetized plasma on
a gravitational center. At some stage, the magnetic field
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becomes strong enough to modify profoundly the dynamics
of gravitational contraction, in particular, by introducing an
essential anisotropy into the problem [Mestel, 1985]. This
makes, generally speaking, the problem a time-dependent
and three-dimensional (3-D) one.

A similar situation occurs in many problems of space
physics where the magnetic field strongly influences the
plasma motion, for example, in the case of solar-wind–
magnetosphere interactions [Biernat, 1991; Biernat et al.,
1987]. In this case a relatively weak interplanetary magnetic
field is amplified more than 10 times in the course of solar
wind flow around the magnetosphere, producing a so-called
magnetic barrier or depletion layer [Erkaev, 1989; Zwan and
Wolf, 1976]. It turns out that such a problem with a strong
magnetic field can be successfully solved using the thin flux
tube approximation. The general idea of this approach is
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quite simple. We have to take a test flux tube and let it go
with the solar wind in the case of the magnetosphere, or un-
der the influence of gravitation in the case of star formation.
The time evolution of this test flux tube can provide a clear
physical description of a complicated 3-D time-dependent
plasma flow.

For example, for the Earth’s magnetosphere such an ap-
proach gives the famous Dungey model [Dungey, 1961],
which can describe many important features of the solar
wind–magnetosphere coupling: (1) the magnetic barrier (de-
pletion layer) formation, (2) dayside magnetopause recon-
nection, (3) flux transfer from the dayside magnetosphere
to the nightside, (4) the growth phase of a magnetospheric
substorm (magnetic energy accumulation in the magneto-
tail), (5) reconnection in the magnetotail (magnetospheric
substorm).

Of course, we cannot apply directly the Dungey model
to the completely different process of plasma accretion on
a gravitational center. Instead, we can make the following
general conclusions, which we have to take into account for
other applications:

1. In a first approximation the solar wind–magnetosphere
coupling can be described in terms of flux tubes.

2. The inhomogeneous motion of space plasmas leads to
the accumulation of Maxwellian tensions (magnetic energy).

3. The relaxation of accumulated Maxwellian tensions is
achieved through magnetic reconnection.

4. Magnetic reconnection is initiated inside a small dif-
fusion region as a result of the development of anomalous
resistivity.

Thus our idea is as follows: We will consider the motion
of a test flux tube in the vicinity of a gravitational center
similar to the classical investigation of the motion of a test
particle.

MHD Equations

From a mathematical point of view, to obtain the time
evolution of a flux tube, we first need to formulate the appro-
priate equations. To this end we will introduce Lagrangian
coordinates into the MHD equations to obtain a convenient
mathematical formulation for the flux tube motion [Semenov
and Erkaev, 1989].

The following system of MHD equations (in Gaussian
units) describes the plasma behavior in the vicinity of a grav-
itational center:

ρ

[
∂v
∂t

+ (v · 5)v

]
= −∇

[
p+ B2

8π

]
−ρ∇ψ(r) + 1

4π
(B · ∇)B (1)

∂ρ

∂t
+∇ · (ρv) = 0 (2)

∂B

∂t
= ∇× (v ×B) (3)

∇ ·B = 0 (4)

[
∂

∂t
+ v · ∇

]
p

ργ
= 0 (5)

Equation (1) is the equation of motion, (2) is the continuity
equation, (3) is the induction equation (in the limit of infinite
conductivity, i.e., Rem � 1, where Rem is the magnetic
Reynolds number), (4) encapsulates the solenoidity property
of the magnetic field, and (5) is the equation of state. Here ρ,
v, p, B, ψ, r, and γ are the density, the velocity, the plasma
pressure, the magnetic field, the gravitational potential, the
space coordinate, and the ratio of specific heats, respectively.

Using dimensionless variables,

B∗ =
B

B0
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ρ

ρ0
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L
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T
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p
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M
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the system of equations (1)–(5) can be rewritten as (we shall
omit the “ ∗ ” from now on)

ρ
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]
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[
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]
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Parameters ε, ξ, and χ are defined as
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0

4πρ0v2
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0
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δ2 =
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0

=
1

γ

C2
s

v2
0

where va and Cs are Alfvén and sound speed, respectively.

Frozen-in Coordinate System

The equation of motion (6) describes the behavior of a
magnetic flux tube in the gravitational field. To appreciate
this more fully, we have to rewrite (6), using a Lagrangian
coordinate system (i.e., a coordinate system comoving with
the magnetic flux tube).
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Figure 1. Consecutive states of a unit element of a mag-
netic flux tube.

The following conservation laws are satisfied in the pro-
cess of the magnetic flux tube motion (Figure 1):

M = ρ1∆r1S2 = ρ2∆r1S2 (12)

the mass conservation law,

FB = B1S1 = B2S2 (13)

and the flux conservation law. Therefore using (14) and (15),
we can introduce a new variable α

α =
ρ1∆r1
B1

=
ρ2∆r2
B2

(14)

Thus α is the mass of the magnetic flux tube with unit flux,
and consequently, we can measure the length of a tube in
units of mass. Another variable that we use is the La-
grangian time τ (i.e., motion particle time along the tra-
jectory). In this case, it can be shown that [Semenov and
Erkaev, 1989]
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∂α
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B

ρ

∂

∂α
=

∂

∂r
· ∂r
∂α

=

[
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ρ
· ∇

]
(15)
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∂t
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(16)

consequently, [
B

ρ
· ∇

]
→ ∂

∂α
(17)

∂

∂t
+ (v · ∇) → ∂

∂τ
(18)

Furthermore, we can use (15)–(18) and rewrite the equation
of motion (6) in frozen-in coordinates. Thus we derive the
following system of equations:

rττ − ε2(ρrα)α = −1

ρ
∇P (r)− ξ2∇ψ(r) (19)

P (r) = δ2p+
ε2

2
ρ2r2

α (20)

∂

∂τ

[
P

ργ

]
= 0 (21)

The MHD equation of motion (6), written in frozen-in co-
ordinates is the equation of a nonlinear string, which is well
known in mathematical physics and plays an important role
in the description of many wave-like processes. The left-
hand side of (19) has the form of the 1-D nonlinear string
equation and the right-hand side incorporates the effects of
the total pressure and gravitational potential. Therefore we
can establish an analogy between the nonlinear string and
the magnetic flux tube. This description is very convenient
for various problems, because often it gives important phys-
ical insight [Erkaev, 1989]. In our case, it is more convenient
to consider an isolated magnetic flux tube.

There is another way to bring out the analogy between
the magnetic flux tube and the nonlinear string. This can
done by employing the variational method.

We can write the Lagrangian L for the magnetic flux tube
as

L =

∫ [
1

2
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)2
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2

2
ρ

(
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)2
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ρ

−ξ2ψ(r)

]
dα (22)

where w is the internal energy of the plasma, w = δ2k[ργ−1/
(γ − 1)]. The Hamiltonian H is written as
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∫ [
1

2
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)2
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2
ρ

(
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)2
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ρ
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]
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Furthermore, we can use the variational method and derive
the system of MHD equations in frozen-in coordinates (19)–
(20).

Also, we can extract a useful property from the Hamilto-
nian (23). Integrating with respect to time, we have
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where Wk and Wp are the kinetic and potential energy re-
spectively,
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Figure 2. Case of the string capture. (a) 3-D view the string motion, and (b, c) 2-D views of the string
motion. Different positions of the string for different times are shown.
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Figure 3. Case of the string capture. The density behavior in the flux tube is shown.

From (24) we can see that the variation of the total energy
in the magnetic flux tube is equal to the flux through the
ends.

To investigate the behavior of a magnetic flux tube falling
toward a gravitational center, we solve the system of equa-
tions (19)–(21) using a Lax-Wendroff numerical method.
This is a two-step method that is often used for the solu-
tion of similar problems.

Results of the Numerical Simulation

The motion of a free particle is well known [Landau and
Lifschits, 1988]. In a gravitational center, a free particle
moves along Kepler orbits, and if a particle has a nonzero
impact parameter, it never can be captured by a gravita-
tional center. For the particles in the magnetic flux tube,
the motion is evidently different from that of a free particle,
because the magnetic field will put a brake on the tube el-
ement (particle). Thus as it loses angular momentum and
energy, a particle will change its orbit gradually, approach
the gravitational center, and finally it will be captured.

As initial conditions for the numerical simulation we take
an undisturbed magnetic flux tube with length l, a distance
to the gravitational center of L, and an impact parameter P̂

(Figure 2). Quantities L, l, and P̂ are supposed to satisfy
the following conditions:

l� P̂ L� P̂ (27)

Furthermore, we perform a parametric investigation of the
string behavior, varying parameters ε, ξ, and χ and consid-
ering their influence on the string motion.

We obtain the following results: There are two different
kinds of motion of the magnetic flux tube in the vicinity
of the gravitational center: capture of the string, and free
string motion.

In the case of the string capture (Figure 2), the central
part of the flux tube begins to fall toward the gravitational
center faster than distant parts. The closer points of the
string are located at the gravitational center, the faster they
move. Thus the distance between the central part and the
other parts of the flux tube increases and the flux tube is
strongly stretched toward the gravitational center. The nu-
merical simulation in this case is continued up to the moment
when the central point of the string reaches a small region
around the gravitational center.

In Figure 3 we see the density behavior in this case. Dur-
ing the string motion, the density increases in the central
part of the flux tube. The plasma from distant regions of
the flux tube flows toward the central part of the string un-
der the influence of the gravitational center. The more mass
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Figure 4. Case of the free string motion. (a) 3-D view of the string motion, (b, c) 2-D views of the
string motion. Different positions of the string for different times are shown.
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Figure 5. Case of the free string motion. The density behavior in the flux tube is shown. There is clear
evidence for the appearance of two oppositely directed waves with increased density.

flows into the central region of the flux tube, the stronger
the influence of the gravitational center on the unit element
of the central part of the string. Thus the central part of
the string falls onto the gravitational center faster and faster
until it is finally captured. Evidently, the magnetic field in
the string is increased as a consequence of the stretching of
the flux tube.

The second case is the free string motion (Figure 4).
In the case of a free string motion, the influence of the

gravitational field on the flux tube is less pronounced than in
the previous case. In this case the gravitational field does not
capture the string but changes the direction of the flux tube
motion (Figure 4). At first the string is strongly stretched
under the influence of the gravitational center, as in the case
of string capture. However, after passing through the imme-
diate neighborhood of the gravitational center, the shape of
the string recovers the initial undisturbed configuration.

In the case of the free string motion, the density behavior
is similar to the case of string capture at first. However,
after passing the closest point to the gravitational center,
the character of the motion changes. Under the influence of
the gravitational field, two oppositely directed MHD waves
are generated in the string (Figure 5). They move along the
flux tube from the central part to the distant regions of the

string and modify the density in the flux tube. The string
density increases after passage of the waves. As a result, the
density along the string increases and the string, as a whole,
is compressed (Figure 4). It is clear why such an effect takes
place, because the mass conservation law has to be satisfied
in the magnetic flux tube.

Thus in this case, the gravitational center influences the
string similar to the influence of a displacement along an
infinite string. It is well known that after the displacement,
an infinite string just changes its position without a change
of shape. In the case of the free string motion we have a
similar effect. However, in our case, the gravitational center
changes the direction of the string motion and density in the
flux tube.

It is well known that if the free particle has a nonzero
impact parameter, it can never be captured by the gravita-
tional center. However, the string can be captured. Thus
there is a strong difference between the free particle motion
and the motion of string particles. This difference is the re-
sult of the magnetic field influence on the particles in the
flux tube. In Figure 6 we can see that even a weak mag-
netic field has a strong influence on the motion of flux tube
particles.

The reconnection process can radically change the kind of
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Figure 6. Influence of the magnetic field on the motion of flux tube particles (X −Z plane). It is clear
that even a weak magnetic field has a strong influence on the motion of flux tube particles.

motion of the magnetic flux tube in the gravitational field.
During the string motion, there is the possibility of the ap-
pearance of a flux tube configuration like as Figure 7. Differ-
ent parts of the magnetic flux tube with oppositely directed
magnetic field are located close to each other. We note that
the approach of a single flux tube is rendered invalid at this
moment. A detailed consideration of conditions for the ini-
tiation of reconnection is out of the frame of this study.

We assumed that the reconnection process occurs at this
moment. As a result, the string is divided into two parts.
The first part rapidly falls toward the gravitational center,
and the second part moves away.

Conclusions

1. The behavior of a magnetic flux tube is radically differ-
ent from free particle motion. The string with the nonzero
impact parameter can be captured by a gravitational cen-

ter. However, the free particle with a similar parameter will
never be captured. Thus there are two types of string be-
havior in the vicinity of the gravitational center: capture of
the string, and the free motion of the string.

2. In the case of the free string motion, two oppositely
directed waves are formed in the flux tube, which propagate
from the central part of the string to distant regions of the
flux tube and increase the string density.

3. The reconnection process has a major influence on the
string behavior and can change the kind of string motion.
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Figure 7. Influence of the reconnection process on the string motion in the vicinity of the gravitational
center.
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