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Radiation hydrodynamics of the stratified solar plasma

C.-V. Meister

Astrophysical Institute Potsdam, Potsdam, Germany

Abstract. Helioseismology makes it possible to determine the conditions in the solar
interior using information from the acoustic waves (p modes) propagating through the Sun
and being detected by remote sensing techniques on its surface. The p modes seem to be
stochastically excited and mainly damped by radiative losses. Besides, Staude et al. [1994]
mentioned that to analyze the velocity and radiation intensity oscillations obtained by
the CORONAS and SOHO satellites, wave models for stratified plasmas have to be taken
into account. Therefore, in reality, one has to consider magnetoacoustic gravity waves.
Thus an attempt is made here to develop the theory of radiation hydrodynamics for the
stratified solar plasma considering the radiation transport in Eddington approximation.
The temperature distribution for stratified plasma is assumed to be nonuniform in the
same way as it has been done by Babaev et al. [1995]. In the momentum balance, the
altitude-dependent radiation pressure is taken into account. Comparing with other works,
here the momentum and energy balances for particles and radiation are studied. Similar
to the works for stratified plasmas neglecting nonadiabatic effects, a dispersion relation is
found introducing the divergence of the plasma velocity as a new parameter.

1. Introduction

Studying global solar oscillations, properties in the veloc-
ity and radiation intensity fluctuations of the acoustic-type
modes (called p modes) were found, which provides a rea-
son to conclude that the waves behave nonadiabatically [e.g.,
Deubner, 1991]. The most probable reasons for this nona-
diabaticity are interactions between the acoustic waves and
the processes of radiation and heat transport as well as tur-
bulence. First theoretical investigations of the visibility of
the luminosity variations of the Sun correlated with p modes
were performed by Toutain and Gouttebroze [1988, 1993].

The interpretation of the wave observations was mostly
limited by adiabatic models. In general, the nonadiabatic
models are yet restricted to the case of gray, homogeneous
atmospheres. Thus the further development of the theory of

Copyright 2002 by the American Geophysical Union.

Paper number GAI00361.
CCC: 1524–4423/2002/0301–0361$18.00

The online version of this paper was published 22 January 2002.
URL: http://ijga.agu.org/v03/gai00361/gai00361.htm
Print companion issued January 2002.

nongray and nonhomogeneous atmospheres stratified in the
gravity field and structured by the magnetic field is needed to
understand the more and more detailed experimental data.

Thus Ibánez and Plachco [1989] introduced in the basic ra-
diation magnetohydrodynamic equations of ideal gases [Mi-
halas and Mihalas, 1984] the electron heat conductivity. Al-
ready Souffrin [1972] obtained a dispersion equation of nona-
diabatic waves for an isothermal atmosphere using the New-
ton approximation for the radiation relaxation. Zhugzhda
[1983] found an analytical solution for nonadiabatic waves
in an isothermal atmosphere with density-dependent radi-
ation transport. Further, in 1991, he presented a general
solution for the fundamental mode of any atmosphere at all.

However, in all the publications mentioned, the magnetic
field was neglected. The influence of the magnetic field in
an isothermal stratified atmosphere was first considered by
Babaev et al. [1995], who used the Newton approximation
for the radiation loss term.

Staude et al. [1994] studied nonadiabatic hydrodynamic
waves, for example, the 5-min oscillations of the solar photo-
sphere and chromosphere, in a homogeneous, nongray, radi-
ating and thermally conducting atmosphere under the con-
dition of thermal equilibrium. It was found that the heat
conductivity by particle collisions only (neglecting effective
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58 meister: radiation hydrodynamics of the stratified solar plasma

wave-particle collisions) seems to be less important than the
heat conductivity due to the radiation transport.

In general, the numerical modeling of the nonadiabatic
waves in radiating atmospheres showed that also the further
development of analytical solutions is of importance, on the
one side, to define the boundary conditions for the numer-
ical calculations [Dzhalilov et al., 1992] and, on the other
side, to guarantee a better analysis of the numerical results.
Thus an analytical study of the radiation hydrodynamics of
a stratified atmosphere is presented here.

2. Eddington Approximation of Radiation
Magnetohydrodynamics

To describe low-frequency phenomena in a fluid plasma
system with radiation transport being influenced by a grav-
ity force, one can use radiation hydrodynamics. This means
that the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0 (1)

the momentum balance

ρ
du

dt
= −∇(p + PR) + ρg (2)

and the energy balance of a nonadiabatic plasma system

dp

dt
− c2

s
dρ

dt
= (1− γ)L = 4π(γ − 1)κ(J − S) (3)

should be considered: d/dt = (∂/∂t + u · ∇), where ρ is
the mass density, p is the scalar pressure, ρu is the momen-
tum density, g is the gravitational acceleration, and γ is the
adiabatic coefficient of the plasma. S is the radiation source
function, J represents the mean intensity of the scattered ra-
diation field, L describes the radiation loss function, and κ
designates the opacity. Taking into account that the square
of the sound velocity is equal to c2

s = γp/ρ, one can also
present (5) in the form

ργ

γ − 1

d

dt

(
p

ργ

)
= −L (4)

Further, it is assumed that the thermodynamic equation of
an ideal gas is applicable:

p =
RρT

µ̃
(5)

where µ̃ is the mean molecular weight. The radiation pres-
sure PR is given by Mihalas and Mihalas [1984]

PR =
4πJ

3c
(6)

The source function S of the electromagnetic radiation is
assumed to be equal to the Planck function

S =
σT 4

π
(7)

where σ = ( 2 π5 k4
B ) / ( 15 h3 c2 ) = (5.6697 ± 0.0029)

× 10−8 W m2 K−4 is the Stefan-Boltzmann constant.
The momentum and energy equations for the radiation

field are used in the Eddington approximation [Mihalas and
Mihalas, 1984]

1

c

dH

dt
+

1

3
∇J = −κH (8)

1

c

dJ

dt
− 4J

3cp

dρ

dt
+∇H = κ(S − J) (9)

J is defined as a specific intensity averaged over all solid
angles:

J(r, t; ν) =
1

4π

∫
I(r, t;n, ν)dΩ (10)

I =
h4ν3

c2
fR dΩ = sinθdθdϕ = −dµdϕ (11)

where fR is the photon distribution function; that is fR(r, t,
n,p) dp is the number of photons, per volume, at place r and
time t, with the momentum lying in the interval (p,p+dp) =
(hν/c)(n,n + dn). The n value points into the direction
of the propagation of the radiation. H is the Eddington
flux, which is defined by the first angular momentum of the
specific intensity

H(r, t; ν) =
1

4π

∫
I(r, t;n, ν)ncosϑdΩ

(12)

ϑ = 6 (n, r)

This means that (8) and (9) describe isotropic media such
as the spherical and the one-dimensional planar ones; ν des-
ignates the photon frequency, h is the Planck constant, and
c is the speed of the light. For the sake of simplicity, we
do not distinguish between the flux-mean opacity (in (8))
and the intensity-mean opacities (equations (3) and (9)).
Such an approximation was also introduced by Bogdan and
Knölker [1989] for the magnetized nonstratified solar atmo-
sphere. The system of equations (1)–(3), (8), and (9) forms
a full system of equations for the three scalar parameters ρ,
p, T , and the vector u.

3. Derivation of the Dispersion Equation

It is assumed that the plasma is gray and that it is slightly
disturbed from its altitude-dependent equilibrium state (des-
ignated by the index “o”)

ρ = ρo(z) u = 0 p = po(z) T = To(z) (13)

J(z) = Jo = σT 4
o (z)/π H = 0 (14)

The equilibrium value of the radiation intensity Jo is found
equating I in (12) with the Kirchhoff-Planck function

Bν(T ) =
2hν3

c2[exp{hν/kBT} − 1]
(15)
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and then averaging the result over the frequency ν. The
equilibrium values of the source function So and the radia-
tion intensity Jo coincide.

The plasma and field parameters may be expressed by the
sum of the equilibrium values and the disturbances, which
are designated by the index “1,”

ρ(r, t) = ρo(z) + ρ1(r, t) u(r, t) = v(r, t) (16)

p(r, t) = po(z) + p1(r, t) T (r, t) = To(z) + T1(r, t) (17)

J(r, t) = σT 4
o (z)/π + J1(r, t) H(r, t) = H1(r, t) (18)

Further, an attempt is made to derive the dispersion equa-
tion of nonadiabatic waves in the nonhomogeneous solar sub-
stance and to find a way to obtain relations between the
wave amplitudes of different plasma parameters. For the in-
terpretation of experimental data on the solar atmosphere, it
is especially important to study temperature and radiation
intensity fluctuations. The method used here is analogous
to the method applied for the case when the loss term L = 0
by Roberts [1991].

Taking into account the radiation pressure (6), the equi-
librium momentum balance (2) is written as (g = −gnz)

−∂po

∂z
− 4π

3c

∂Jo

∂z
= gρo(z) (19)

Further, expressing the mean radiation intensity Jo by (14)
and To(z) by the effective solar temperature

T 4
o (z) = T 4

eff

[
3

4
τ +

1

2

]
(20)

T 4
eff =

LS

4πσr2
S

Teff = 5777± 2.5 K (21)

Teff is the effective temperature of a blackbody of solar radius
rS = (6.9626±0.0007)×108 m, which radiates with the total
solar luminosity LS = (3.845 ± 0.006) × 1026 W. Value τ is
the optical depth of the solar atmosphere, which is assumed
to be gray, which that means

4T 3
o

∂To

∂z
=

3LS

16πσr2
S

κo(z) (22)

and
∂Jo

∂z
=

3c

4π
Aκo(z) A =

LS

4cπr2
S

= const (23)

Finally, one obtains the equilibrium condition

∂po

∂z
= −Aκo(z)− gρo(z) (24)

where A ≈ 0.2105 N m−2 is known. For g the gravitational

acceleration at the solar surface g = 274 m s−2 will be used.
On the other side, To in the equilibrium formula Jo =

σT 4
o /π, can be expressed by the equation of state,

Jo =
σµ̃4p4

o

πR4ρ4
o

(25)

Forming the z derivative of Jo given by (25), and equating
the result with ∂Jo/∂z of (24), one has

κo =
16σ

3Ac
T 3

o
∂To

∂z
= − [gρo + (po/ρo)ρ

∗
o]

A + ρ4
o/(Cp3

o)
ρ∗o =

∂ρo

∂z
(26)

C =
16σµ̃4

3AcR4
=

64σµ̃4πr2
S

3R4Ls
(27)

This relation gives a possibility to estimate κo using tables
of ρo and po found within the standard solar model. A com-
parison of the results with available opacity values allows
an evaluation of the quality of the theory developed here of
nonadiabatic solar waves. It should be also mentioned that
deriving (26) and (27), the mean molecular weight µ̃ was
taken to be altitude-independent. An improvement of (26)
and (27) for altitude-dependent µ̃(z) can easily be done.

In the case of low-temperature solar plasma with log T
< 3.85, opacity tables with an accuracy of about 10−3 are
available (see, for example, the review by Gong and Däppen
[1998]). In the solar atmosphere about 300 km thick (τ ∼<
1), the opacity averaged over the frequency is about 3 ×
10−8 cm−1. For the Sun in general, typical values of the
opacity per unit of mass are 0.5× 104 cm2 g−1 [Weigert and
Wendker, 1996].

Parameters of the photosphere and lower chromosphere
of the Sun are presented in Table 1 and Figures 1 and 2
after Weigert and Wendker [1996]. On the basis of these
parameters, opacities are calculated using the dependen-
cies on To and po − ρo given by (26). The results for the
opacities are compared with the continuum opacity vales at
500 nm presented by Kurucz [1979] for solar regions with
To ∼< 11, 000 K. It is clear that within the very simple model
presented here with constant µ̃, only the order of magnitude
of the opacity in certain solar regions may be reproduced.

Considering the radiation equilibrium described by (8)
and (9), one finds the relations

1

3

∂Jo

∂z
= −κoHoz (28)

and

divHo = 0 (29)

Equation (28) shows that in the case of nonuniform tempera-
ture the mean Eddington flux does not vanish. Considering
only vertical gradients in the plasma, relation (29) results
into a constant z component of the mean Eddington flux.
Expressing ∂Jo/∂z by (23), one obtains

Hoz = −Ac

4π
= const (30)

For the linearized momentum balance, one finds from (2)

ρoωvx = kxp1 +
4π

3c
kxJ1 (31)

vy = 0 (32)

iρoωvz =
∂p1

∂z
+

4π

3c
J∗1 + gρ1 J∗1 =

∂J1

∂z
(33)

The linearized continuity equation has the form

−iωρ1 + ρoD
o + v gradρo = 0 (34)
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Figure 1. Parameters of the solar atmosphere (presented in Table 1) as a function of the altitude h.
1, the pressure p in Pa; 2, the temperature T in K; 3, the mass density ρ in 10−10 g cm−3.

Here

Do = div v = ikxvx +
∂vz

∂z
(35)

The corresponding energy balance for the disturbances is
(using dρ/dt = −ρ∇v)

−iωp1 + vz
∂po

∂z
+ c2

sρoD
o

= 4π(γ − 1)κo

(
J1 −

4σT 3
o

π
T1

)
(36)

Expressing ∂po/∂z in (36) by (3), and T1 by the linearized
equation of state

T1

To
=

p1

po
− ρ1

ρo
(37)

one obtains

−iωp1 − gρovz −Aκovz + c2
sρoD

o

= 4π(γ − 1)κo

(
J1 −

4σT 4
o

π

p1

po
+

4σT 4
o

π

ρ1

ρo

)
(38)

The equations (31)–(34) and (38) describe the disturbances
of the plasma parameters ρ1, v, and p1, which are coupled
to the radiation field by J1. The latter value has to be found
from (8) and (9).

For the disturbances of the radiation field, one finds from
(8), (9), and (30)

− iω

c
H1x +

ik

3
J1 = −κoH1x (39)

− iω

c
H1z +

1

3

∂J1

∂z
= −κoH1z (40)
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Figure 2. Absolute value of the opacity of the solar atmosphere (presented in Table 1) as a function of
altitude h. 1, κp,ρ; 2, κT ; 3, κK . The opacity is in cm−1 units.

− iω

c
J1 +

vz

c

∂Jo

∂z
+

4Joρo

3cpo
Do + ikH1x +

∂H1z

∂z

= κo

(
4σT 4

o

π

p1

po
− 4σT 4

o

π

ρ1

ρo
− J1

)
(41)

Expressing ∂Jo/∂z in (41) by (23) and (28), and substituting
H1x by (39) and H1z by (40), one obtains for the dependence
of the radiation intensity J1 on the plasma disturbances the
following formula:

− iω

c
J1 +

3Aκo

4π
vz +

4Joρo

3cpo
Do +

k2

3(κo − iω/c)
J1

− J∗∗1

3(κo − iω/c)
+

J∗1 κ∗o
3(κo − iω/c)2

= κo

(
4σT 4

o

π

p1

po
− 4σT 4

o

π

ρ1

ρo
− J1

)
(42)

J∗∗1 =
∂2J1

∂z2
κ∗o =

∂κo

∂z

Now (31), (33)–(35), (38), and (42) have to be used to derive
the dispersion equation of the nonadiabatic waves. These
equations describe the disturbances vx, vz, p1, J1, ρ1, and
Do.

As a next step, ρ1 will be excluded from the system of
equations. Therefore ρ1 from (34),

ρ1 =
vzρ∗ + ρoD

o

iω
(43)

is substituted into (33), (38), (42). One finds then

∂p1

∂z
+

4π

3c
J∗1 + vz

[
gρ∗

iω
− iωρo

]
+

gρoD
o

iω
= 0 (44)
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Table 1. Parameters of the Photosphere (h ∼<300 km) and Lower Chromosphere (h ∼>300 km) of the Sun [Weigert and
Wendker, 1996]

h, km τ T , K p, Pa ρ, g cm−3 κp,ρ, cm−1 κT , cm−1 log κ∗K κK , cm−1

1 560 10−4 4180 71 3.6× 10−9 −1.5× 10−7 1.4×10−8 −2.22 2.2×10−11

2 420 10−3 4370 350 1.3× 10−8 −8.7× 10−8 −5.4× 10−9 −2.10 1.0×10−10

3 320 0.005 4560 850 3.1× 10−8 −8.7× 10−8 −8.6× 10−9 −1.68 6.5×10−10

4 278 0.01 4640 1300 4.5× 10−8 −4.6× 10−8 −9.1× 10−9 −1.5 1.4×10−9

5 178 0.05 4950 3100 1.0× 10−7 −9.6× 10−8 −1.8× 10−8 −1.1 7.9×10−9

6 136 0.1 5140 4700 1.5× 10−7 −2.7× 10−8 −2.9× 10−8 −0.90 1.9×10−8

7 91 0.2 5410 6800 2.1× 10−7 −8.7× 10−8 −4.6× 10−8 −0.74 3.8×10−8

8 36 0.5 5920 10, 000 2.9× 10−7 −1.7× 10−7 −9.2× 10−8 −0.46 1.0×10−7

9 0 1.0 6430 13, 000 3.5× 10−7 −2.1× 10−7 −1.8× 10−7 +0.03 3.8×10−7

10 −27 2.0 7120 15, 000 3.6× 10−7 −6.8× 10−7 −4.4× 10−7 +0.3 7.2×10−7

11 −56 5.0 8100 18, 000 3.7× 10−7 −9.7× 10−7 −8.6× 10−7 +0.8 2.3×10−6

12 −72 10.0 8650 20, 000 3.8× 10−7 −9.5× 10−7 −1.1× 10−6 +1.08 4.6×10−6

13 −88 20.0 9200 21, 000 3.8× 10−7 −1.7× 10−6 −1.3× 10−6 +1.35 8.5×10−6

Value τ is the optical depth for the radiation at a wavelength of 500 nm, T is the temperature, p is the pressure, ρ is the density. κp,ρ

is the opacity calculated using the po − ρo dependence given by (26), and κT designates the opacity calculated on the basis of the
To dependence of (26). log κ∗K is the log-value of the continuum mass absorption coefficient at 500 nm obtained by the convection
model [Kurucz, 1979], and κK is the absolute value of the opacity found from κ∗K . The altitude h = 0 is related to τ = 1.

[
ακoT

4
o

po
− iω

]
p1 −

[
gρo + Aκo +

ακoT
4
o ρ∗

iρoω

]
vz

+

[
c2

sρo −
ακoT

4
o

iω

]
Do = 4π(γ − 1)κoJ1 (45)[

κo −
iω

c
+

k2

3(κo − iω/c)

]
J1

+

[
3Aκo

4π
+

4σT 4
o κoρ

∗

iπρoω

]
vz

+

[
4Joρo

3cpo
+

4σT 4
o κo

iπω

]
Do − κo4σT 4

o

πpo
p1

=
J∗∗1

3(κo − iω/c)
− J∗1 κ∗o

3(κo − iω/c)2
(46)

ε =
4π

3c
α = 16(γ − 1)σ (47)

β =
ρoc

3
s

(γ − 1)σT 4
o

=
16γpocs

αT 4
o

(48)

Further, expressing vx by (31), Do one can transform (35)
into

Do = ikvx +
∂vz

∂z
=

ik2

ρoω
(p1 + εJ1) +

∂vz

∂z
(49)

and (44)–(46) and (49) describe p1, J1, vz and Do. Further,
we try to exclude p1 and vz from the systems of equations,
and to find an equation for Do (according to the method
of solution for the plasma without radiation) containing an
additional J1 contribution.

Thus first we exclude Do from (44) to (46) and find p1 and
vz as a function of J1. Thus Do from (49) will be substituted
into (44)–(46) to obtain

gk2

ω2
(p1 + εJ1) + vz

[
gρ∗

iω
− iωρo

]
+

∂p1

∂z
+ εJ∗1 +

gρo

iω

∂vz

∂z
= 0 (50)[

ακoT
4
o

po
− iω +

ik2c2
s

ω
− k2ακoT

4
o

ρoω2

]
p1

+

[
iεk2c2

s

ω
− k2εακoT

4
o

ρoω2
− 4π(γ − 1)κo

]
J1

−
[
gρo+Aκo+

ακoT
4
o ρ∗

iρoω

]
vz

+

[
c2

sρo−
ακoT

4
o

iω

]
∂vz

∂z
= 0 (51)[

−4κoσT 4
o

πpo
+

i4k2Jo

3cpoω
+

4σT 4
o κok

2

πω2ρo

]
p1

+

[
κo −

iω

c
+

k2

3(κo−iω/c)
+

4ik2εJo

3cpoω
+

4σT 4
o κok

2ε

πω2ρo

]
J1

+

[
3Aκo

4π
+

4σT 4
o κoρ

∗

iπρoω

]
vz +

[
4Joρo

3cpo
+

4σT 4
o κo

iπω

]
∂vz

∂z

=
J∗∗1

3(κo − iω/c)
− J∗1 κ∗o

3(κo − iω/c)2
(52)

Considering the limit of infinite Boltzmann number β
(which is mathematically equivalent to σ → 0, e.g., Jo → 0)



meister: radiation hydrodynamics of the stratified solar plasma 63

in the energy balances (51) and (52), one can simplify the
latter relations[

ik2c2
s

ω
− iω

]
p1 +

[
iεk2c2

s

ω
− 4π(γ − 1)κo

]
J1

− [gρo + Aκo] vz + c2
sρo

∂vz

∂z
= 0 (53)[

κo −
iω

c
+

k2

3(κo − iω/c)

]
J1 +

3Aκo

4π
vz

=
J∗∗1

3(κo − iω/c)
− J∗1 κ∗o

3(κo − iω/c)2
(54)

Substituting p1 from (45) (in the limit σ → 0)

−iωp1 − [gρo + Aκo] vz + c2
sρoD

o = 4π(γ − 1)κoJ1 (55)

into (49) for Do, one finds(
1− c2

sk
2

ω2

)
Do =

J1

ρoω2

[
iεk2ω − 4π(γ − 1)κok

2
]

− vz

ρoω2

[
k2gρo + Ak2κo

]
+

∂vz

∂z
(56)

Then, forming the z derivative of (55) and substituting into
the result the expression for ∂vz/∂z found from (56), one
has

∂p1

∂z
=

Do

iω

[
c2

sρ
∗
o+ρo(c

2
s)
∗−
(

1− c2
sk

2

ω2

)
(gρo + Aκo)

]

+
Do∗

iω
c2

sρo −
vz

iω

[
gρ∗o + Aκ∗o +

{
k2g

ω2
+

Aκok
2

ρoω2

}
×(gρo + Aκo)

]
− 4π(γ − 1)κ∗oJ1 − 4π(γ − 1)κoJ

∗
1

+
k2J1

iρoω3
(gρo + Aκo)[iεω − 4π(γ − 1)κo] (57)

Now ∂p1/∂z from (57) is substituted into (44). Using the
relation

(c2
s)
∗

c2
s

= −ρ∗o
ρo
− γg

c2
s
− Aγκo

ρoc2
s

(58)

one finds

Do∗ + Do

[
k2g

ω2
− γg

c2
s
− Aκo

ρoc2
s

(
1 + γ +

k2c2
s

ω2

)]
+

vz

c2
s
G1(ω, k) + F1(J1, J

∗
1 ) = 0 (59)

G1(ω, k) = ω2 − g2k2

ω2
− Aκ∗o

ρo
− 2Ak2gκo

ρoω2
− A2k2κ2

o

ρ2
oω2

(60)

F1(J1, J
∗
1 ) =

iω

ρoc2
s

[εJ∗1 − 4π(γ−1)κ∗oJ1 − 4π(γ−1)κoJ
∗
1 ]

+
ik2

c2
sρ2

oω
(gρo + Aκo)

[
ε− 4π(γ−1)κo

iω

]
J1 (61)

The z derivative of (59) is written as

Do∗∗ + Do∗
[

k2g

ω2
− γg

c2
s
− Aκo

ρoc2
s

(
1 + γ +

k2c2
s

ω2

)]

+
Do

c2
s

(
(c2

s)
∗

c2
s

(
γg +

Aκo

ρo
+

Aκoγ

ρo

)
+

[
1 + γ +

k2c2
s

ω2

]

×
(

Aκoρ
∗
o

ρ2
o

− Aκ∗o
ρo

)
+

[
1− k2c2

s

ω2

]
G1(ω, k)

)

+
vz

c2
s

((
k2g

ω2
+

Aκok
2

ρoω2
− (c2

s)
∗

c2
s

)
G1(ω, k)+G2(ω, k)

)
+F2(J1, J

∗
1 , J∗∗1 ) = 0 (62)

G2(ω, k) =
A

ω2ρ2
o

[
−ω2ρoκ

∗∗
o + ω2κ∗oρ∗o − 2k2gκ∗oρo

+2k2gκoρ
∗
o − 2Ak2κ∗oκo +

2Ak2κ2
oρ
∗
o

ρo

]

F2(J1, J
∗
1 , J∗∗1 ) =

∂F1(J1, J
∗
1 )

∂z

+[4π(γ − 1)κok
2 − iεk2ω]

J1G1(ω, k)

ρoω2c2
s

(63)

Multiplying (59) by

G3(ω, k) =
k2g

ω2
+

Aκok
2

ρoω2
− (c2

s)
∗

c2
s

(64)

and subtracting (62) from the result, one obtains

Do∗∗ + Do∗
[

(c2
s)∗
c2

s
− γg

c2
s
− Aκo

ρoc2
s

(
1 + γ +

2k2c2
s

ω2

)]

+Do

(
ω2 − k2c2

s

c2
s

+
gk2

ω2

{
(c2

s)
∗

c2
s

+
(γ − 1)g

c2
s

}

+
Aκoρ

∗
o

ρ2

[
2k2

ω2
+

1 + γ

c2
s

]
− Aκ∗o(2 + γ)

ρoc2
s

+
Aκok

2

ρoω2
×
[

3γg

c2
s

+
2k2g

ω2
+

2Aκoγ

ρoc2
s

+
2Aκok

2

ρoω2

])

+
vz

c2
s
G2(ω, k)− F1(J1, J

∗
1 )G3(ω, k)

+F2(J1, J
∗
1 , J∗∗1 ) = 0 (65)

In the case of a vanishing radiation transport J = 0, A = 0,

(65) may be transformed into a simple relation:

d2Q

dz2
+ R2Q = 0 Q =

√
ρ

o
c2

sD
o (66)
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R2 =
ω2 − ω2

a

c2
s

+ k2

(
ω2

g

ω2
− 1

)
(67)

ω2
a =

c2
sρ
∗2

4ρ2
o

[
3− 2

ρoρ
∗∗
o

ρ∗2o

]
ω2

g = −g2

c2
s
− gρ∗o

ρo
(68)

where ωa and ωg are the acoustic cutoff frequency and the
buoyancy frequency of a stratified atmosphere without radi-
ation transport. For linear temperature profiles, a solution
of (66) was first found by Lamb [e.g., Roberts, 1991]. This so-
lution may be represented by confluent hypergeometric func-
tions. In all other cases (66) and above all (65) for systems
with radiation transport have to be solved numerically.

1. Therefore first the fluctuations of the intensity of the
scattered radiation field have to be found. Thus Do from
(56) (with vz from (54) and ∂vz/∂z from the z derivative
of (54)) and Do∗ from the z derivative of (56) (with vz,
∂vz/∂z, ∂2vz/∂z2 from (54) and its z derivatives) have to be
substituted into (59). Consequently, a differential equation
of the fourth order for J1 with respect to z will be found,
which has to be solved for given boundary conditions.

2. If one has obtained J1, the solution for vz may be
obtained from (54).

3. Knowing J1 and vz, one may further determine p1

using, for example, (53).
4. After that, it is possible to find vx using (31).
5. Then, with the help of (42) (expressing Do by (56)),

ρ1 may also be found.
6. From (37), one determines then temperature fluctua-

tions especially important for interpretation of satellite ex-
periments T1.

7. Besides, from (39) and (40), one may obtain H1x and
H1z, respectively.

Applications of this method to find the fluctuations of the
parameters of the solar plasma and the radiation field will
be presented in further papers.

3. Conclusions

In the present paper, former models of hydrodynamic adi-
abatic atmospheric waves are extended to the case of nona-
diabatic acoustic-gravity waves in a system with radiation
transport where the radiation relaxation is described in the
Eddington approximation.

Effects of the stratification of the atmosphere are taken
into account, but no influence of the mean magnetic field is
considered. The temperature distribution is assumed to be
nonuniform, and an altitudinal-dependent radiation pressure
is taken into account in the momentum balances.

In analogy to the works for stratified plasmas neglect-
ing nonadiabatic effects, a dispersion relation is found in-
troducing the divergency of the plasma velocity as a new
parameter. In the obtained dispersion relation, there ap-
pear new radiation-intensity–dependent coefficients and ad-
ditional terms describing the wave damping by the radiation
transport.

The momentum and energy balances for the particles and
the radiation are studied here, contrary to other works. Thus

a simple approximate relation between the opacity and the
mean plasma pressure, the mean pressure gradient and the
mass density is found. This relation may be used to esti-
mate the quality of the model developed for the atmospheric
acoustic-gravity waves. Since, for the sake of simplicity, the
mean-molecular-weight gradients in the system are neglected
here, one is able to estimate only the order of magnitude of
the opacity.

A scheme is given, which indicates how to find succes-
sively the amplitudes of the plasma (velocity, mass density,
pressure, temperature) and radiation field (radiation inten-
sity, Eddington flux) parameters in a stratified atmosphere
where hydrodynamic acoustic-gravity waves exist. To apply
this scheme, boundary conditions for the radiation intensity
fluctuations and their spatial derivaties up to the fourth or-
der have to be taken into account.

Analytical expressions to calculate the amplitudes of the
plasma and radiation field variations are presented for the
case of a large Boltzmann number of the substance, i.e. for
relatively cold atmospheres with high plasma pressure and
rather low mass density, or for a substance with a polytropic
coefficient of the order of unity. The obtained results may
be used for the interpretation of experimental data obtained
during the solar satellite experiments, e.g., CORONAS and
SOHO.
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Gong, Z., and W. Däppen, The influence of low-temperature opac-
ity on solar models and p mode frequencies, in Proceedings of
the SOHO 6/GONG 98 Workshop on “Structure and Dynam-
ics of the Interior of the Sun and Sun-like Stars,” ESA SP-418,
465 pp., Eur. Space Agency, Paris, France, 1998.
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