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Instability of the magnetopause with a finite curvature
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Abstract. This article deals with the magnetohydrodynamic instability of the high
magnetic shear magnetopause, which is considered to be a thin layer with a constant
curvature radius and plasma velocity shear. In our model, the magnetic field and plasma
density are assumed to be piecewise constant in three regions: in the magnetosphere adjacent
to the magnetopause, in the magnetosheath, and inside a thin layer associated with the
magnetopause. The plasma parameters and the magnetic field are assumed to obey the
ideal incompressible magnetohydrodynamics. A Fourier analysis is used to calculate small
perturbations of magnetic field and plasma parameters near the magnetopause in a linear
approximation. The instability growth rate is obtained as a function of the angle between
the velocity vector and the geomagnetic field direction for different plasma bulk speeds,
wave numbers and curvature radii. The resulting instability is a mixture of interchange
and Kelvin-Helmholtz instabilities on a surface with a nonzero curvature. The instability
growth rate is an increasing function of the tangential velocity component perpendicular
to the magnetic field. On the other hand, the growth rate is a decreasing function of the
velocity component along the magnetic field.

Introduction

The interchange instability is similar in nature to the
Rayleigh-Taylor instability in classical hydrodynamics, where
the magnetic stress plays the role of an effective gravitational
force [Chandrasekhar, 1968; Freidberg, 1987].

Concerning the high shear subsolar magnetopause, the
possibility of the interchange instability was discussed by
Alexeev and Maltsev [1990] and Rezenov and Maltsev [1994].
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In the particular case of a southward interplanetary mag-
netic field (IMF), the plasma pressure has a maximum at
the point where the magnetic field strength is zero inside the
magnetopause under constancy of the total pressure across
the magnetopause. Assuming a local enhancement of the
plasma pressure at a tangential discontinuity, they estimated
the instability growth rate for the magnetopause as a func-
tion of the local curvature radius.

As was shown by Arshukova and Erkaev [2000], the thick-
ness of the magnetopause is an important parameter that
affects substantially the interchange instability growth rate.
Additional aspects to be studied are those related to a ve-
locity shear at the magnetopause which drives the Kelvin-
Helmholtz instability and has a strong influence on the in-
terchange instability.

As was shown by Luhman et al. [1984], areas of nearly
antiparallel magnetic field have locations that depend on
the IMF orientation. Generally, velocity shear has to be
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28 arshukova et al.: instability of the magnetopause

Figure 1. Geometrical illustrations corresponding to
(a, b) Rezenov and Maltsev [1994] and (c, d) to our model.

taken into account for high magnetic shear regions located
far away from the subsolar point. In the particular case
of northward IMF, antiparallel magnetic field components
occur in the nightside of the magnetosphere, where the ve-
locity of plasma flowing around the magnetosphere is rather
large and directed along the magnetic field. In the case of
a southward IMF, there is a large area of nearly antiparallel
magnetic fields on the dayside magnetopause which has a
long spatial extension in both the meridional and the equa-
torial planes. The plasma velocity is directed parallel to the
magnetic field in the meridional plane and perpendicular to
the magnetic field in the equatorial plane.

The aim of our paper is to study the interchange instabil-
ity of the magnetopause taking into account plasma velocity
which has an arbitrary direction along the magnetopause
and allowing for finite thickness and nonzero curvature.

Statement of Problem

We consider the magnetopause to be a thin layer (see
Figure 1) of thickness 2a. This layer has two boundaries:
the first is that of contact with the magnetosheath (F1) and
the second is that of contact with the magnetosphere (F2).
The magnetic fields of the magnetosheath and the magneto-
sphere are denoted by vectors B1 and B2, respectively, and
the magnetic field inside the layer, B0, is determined as the
vector average: B0 = (B1 +B2)/2. The direction of plasma
flow is determined by the angle α between the velocity vector
and the geomagnetic field (z axis).

To describe temporal and spatial variations of the mag-
netic field and plasma parameters resulting from small per-
turbations of the boundaries F1 (x1 = f1(y, z, t)) and F2

(x2 = f2(y, z, t)), we use the ideal magnetohydrodynamics

(MHD) equations (in Gaussian units) in the incompressible
case [Landau and Lifshitz, 1960]:

∂U

∂t
+ (U∇)U +

1

ρ
∇ (P ) =

1

4πρ
(B∇)B (1)

∂B

∂t
= ∇× [U×B] ∇ · B = 0 (2)

∂ρ

∂t
+∇ · (ρU) = 0 (3)

Here ρ,U, P , and B are the density, velocity, total pressure,
and magnetic field strength, respectively.

Assuming F1 and F2 to be tangential discontinuities, we
have no-flow conditions for the normal components of veloc-
ity:

(U1,2 −D) · N̂ = (U0 −D) · N̂ = 0 (4)

where D is the speed of the boundary surface and N̂ is the
unit vector normal to the boundary surface. In addition, we
have the balance of the total pressure at both boundaries:

P1 = P0 when x = a P2 = P0 when x = −a (5)

Hereinafter, subscripts “1, 0, 2” denote magnetic field and
plasma parameters in the following three regions, respec-
tively: in the magnetosheath, inside the layer, and in the
magnetosphere.

Generally, the surface of the magnetopause is character-
ized by two main local curvature radii, Ry and Rz. In a
small neighborhood of the chosen point on the surface, we
introduce a local coordinate system with respect to the sur-
face. The two coordinates y and z are the distances along
the curves on the surface with curvature radii Ry and Rz,
respectively. The third coordinate x is the distance along
the normal to the surface.

We introduce small perturbations of the magnetic field
and plasma parameters as follows:

B = B∗ + b

P = P ∗ + p

U = U∗ + u

where |b| � |B|, p � P , |u| � |U|.
Assuming, that B∗

x and U∗
x are equal to zero, we obtain

from (1) the following equations in a linear approximation:

∂ux

∂t
+ (U∗∇∗)ux − 2

(
U∗

y uy

qy Ry
+

U∗
z uz

qz Rz

)
+

1

ρ

∂p

∂x

=
1

4πρ

[
(B∗∇∗)bx − 2

(
B∗

yby

qy Ry
+

B∗
z bz

qz Rz

)]
(6)

∂uy

∂t
+ (U∗∇∗)uy +

U∗
y ux

qy Ry
+

1

qy ρ

∂p

∂y
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1

4πρ
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ybx
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+

1

qz ρ

∂p
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=
1

4πρ
((B∗∇∗)bz +

B∗
z bx

qz Rz
) (8)

∂P ∗

∂x
= − 1

4π

(
B∗ 2

y

Ry
+

B∗ 2
y

Ry

)
+ ρ

(
U∗ 2

y

Ry
+

U∗ 2
z

Rz

)
(9)

∇ · u = 0 ∇ · b = 0 (10)

Here ∇∗ is a vector operator defined as

∇∗ =

(
∂

∂x
,

1

qy

∂

∂y
,

1

qz

∂

∂z

)
where qy and qz are the metric coefficients related to the
curvature qy = 1 + x/Ry, qz = 1 + x/Rz. It is important
to note that we incorporate only the first-order terms with
respect to the curvature ∼1/Ry, ∼1/Rz.

Initially, the plasma is assumed to satisfy the steady-state
condition and thus the gradient of the total pressure is as-
sumed to compensate magnetic stress and to support the
normal centrifugal acceleration of plasma flowing around the
curved surface. Therefore the initial total pressure is a func-
tion of the normal distance x which is linearized near the
surface as follows:

P = Π0 −
1

4π

(
B∗2

y

Ry
+

B∗2
z

Rz

)
x + ρ

(
U∗2

y

Ry
+

U∗2
z

Rz

)
x (11)

where Π0 is a constant parameter. Variation of the total
pressure determined by (11) is caused by magnetic field ten-
sion and centrifugal force.

From (2) and (3), we obtain in a linear approximation

∂bx

∂t
= (B∗∇∗)ux − (U∗∇∗)bx (12)

∂by

∂t
= ((B∗∇∗)uy − (U∗∇∗)by

+ (uxB∗
y − bxU∗

y )
1

qy Ry
(13)

∂bz

∂t
= (B∗∇∗)uz − (U∗∇∗)bz

+ (uxB∗
z − bxU∗

z )
1

qz Rz
(14)

∂(qyqzux)

∂x
+

∂(qzuy)

∂y
+

∂(qyuz)

∂z
= 0 (15)

For simplicity, we consider the two curvature radii to be
equal to each other: Ry = Rz = R. For computational con-
venience, we introduce the dimensionless parameters K =
ka, r = R/a, ρ̃i = ρi/ρ1, Hi = B∗

i /B∗
2 , x̃ = x/a,

hi = bi/B∗
2 , Vi = U∗

i

√
4πρ1/B∗

2 , vi = ui

√
4πρ1/B∗

2 ,
ω̃ = ω

√
4πρ1a/B∗

2 , and p̃ = p 4π/B∗
2
2. We use a dimension-

less small parameter ε = 1/kR = 1/Kr which treated in a
linear approximation. We also adopt the following inequality
relation: a � λ � R.

We can apply the usual Fourier method to solve our linear
MHD problem. Thus considering all perturbations to be
proportional to the complex exponential function exp(i(Ks−
ω̃t)), where s is a two-dimensional vector in the plane (yz),
we obtain from (6)–(10) the following:

−i q ω̃ vx + i (VK)vx − 2 ε K(Vv) + q
1

ρ̃

∂p̃

∂x̃

=
1

ρ̃
[i (HK) hx − 2 ε K(Hh)]

−i q ω̃ vy + i (VK)vy + ε K(Vyvx) +
1

ρ̃
i Ky p̃

=
1

ρ̃
[i (HK) hy + ε K(Hyhx)] (16)

−i q ω̃ vz + i(VK) vz + εK(Vzvx) +
1

ρ̃
i Kz p̃

=
1

ρ̃
[i (HK) hz + ε K(Hzhx)]

where q = qy = qz = 1 + ε K x̃. In the dimensionless form,
equation (11) can be rewritten as

P̃ = Π̃0 − ε
K x̃

q

(
H2 − ρ̃V 2

)
(17)

After normalization, the system of equations (12)–(15) yields

−i q ω̃ hx = i (HK) vx − i (VK) hx

−i q ω̃ hy = i (HK) vy − i (VK) hy

+ε K (vx Hy − hx Vy)

−i q ω̃ hz = i (HK) vz − i (VK) hz

+ε K (vx Hz − hx Vz) (18)

−i
∂vx

∂x̃
+ Kyvy + Kzvz − 2εK(ivx) = 0 (19)

Using continuity equation (19) together with equations
(16) and (18), we obtain a differential equation for the total
pressure:

−(1 + εKx̃)
∂2p̃

∂x̃2
+ εd

∂p̃

∂x̃
+ K2p̃ = 0 (20)

where

d = K

{
1 +

(HK)2 + W 2 + 2W (VK)

(HK)2 −W 2

}
W = ω̃ − (VK)

Instability of One Boundary

At first, we start off with the simplified statement of prob-
lem, which is similar to that studied by Rezenov and Maltsev
[1994]. This simplified statement concerns the interchange
instability of one boundary F1 separating the magnetosheath
magnetic field from that inside the magnetopause.

In this case, the dimensionless differential equation for
pressure (20) is simplified:

∂2p̃

∂x̃2
+ 2 ε K

2(HK)2 − ω2

(HK)2 − ω2

∂p̃

∂x̃
−K2 = 0 (21)

p̃1 = c1 exp (−κ1x̃) and p̃0 = c0 exp (κ0x̃), where κ1 > 0,
κ0 > 0 are the solutions of equation (21).
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From the boundary conditions (4) and (5) we obtain

i (vx)1 = ω̃f1

i (vx)0 = ω̃f1

p̃1 −
H2

1

r
f1 = p̃0 −

H2
0

r
f1 (22)

From the equations (16), (18), and (22), we obtain a linear
algebraic system for the coefficients c1, c0, f1:

ω̃ S1 f1 = (Q1 + κ1) c1

ω̃ S0 f1 = (Q0 − κ0) c0

c1 − c0 = ε K (H2
1 −H2

0 ) f1 (23)

where

Si =
(HK)2 − ω̃2

ω̃
Qi = − ε 2 K

(HK)2

(HK)2 − ω̃2
(24)

We have the following algebraic equation for the growth rate
of instability:

ω̃ S1

Q1 + κ1
− ω̃ S0

Q0 − κ0
= ε K (H2

1 −H2
0 ) (25)

Equation (25) determines the growth rate of interchange in-
stability of one boundary as a function of the magnetosheath
magnetic field direction (angle θ), wave number (k), and lo-
cal curvature radius of the magnetosphere (R).

Problem With Two Boundaries

In this section, we study the interchange instability taking
into account a finite thickness of the subsolar magnetopause
and a nonzero velocity of the plasma flow.

We seek for a solution of equation (20) in an exponential
form: p̃ = C(x̃) exp(κ0x̃) = (C0 + εC1(x̃)) exp(κ0x̃). There-
fore we have exponential solutions for p̃ in three regions.
In the regions above F1 and below F2 (see Figure 1), per-
turbations of the total pressure are given by the following
equations:

p̃1 = c1 exp(−Kx̃)
{

1 +
ε

4

[
(2d1 + K)x̃ + K2x̃2

]}
(26)

p̃2 = c2 exp(Kx̃)
{

1 +
ε

4

[
(2d2 + K)x̃−K2x̃2

]}
In the region between F1 and F2, the solution for the total
pressure is a combination of two exponential functions:

p̃0 = c01 exp(−Kx̃)
{

1 +
ε

4

[
(2d0 + K)x̃ + K2x̃2

]}
+c02 exp(K + x̃)

{
1 +

ε

4

[
(2d0 + K)x̃−K2x̃2

]}
(27)

Here c1, c2, c01, c02 are constants.

In dimensionless form, the linearized conditions for total
pressure and velocity are

x̃ = 1 :

p̃1 − ε K
[
H2

1 − ρ̃1 V 2
1

]
= p̃0 − ε K

[
H2

0 − ρ̃0 V 2
0

]
iv1 x = ω̃f̃1 − (V1K) (1− εKx̃) f̃1

iv0 x = ω̃f̃1 − (V0K) (1− εKx̃) f̃1

x̃ = −1 : (28)

p̃2 + ε K
[
H2

2 − ρ̃2 V 2
2

]
= p̃0 + ε K

(
H2

0 − ρ̃0 V 2
0

)
iv2 x = ω̃f̃2 − (V2K) (1− εKx̃) f̃2

iv0 x = ω̃f̃2 − (V0K) (1− εKx̃) f̃2

Assuming that ρ̃1 = ρ̃2 = ρ̃0 = 1, finally we obtain from
equations (16) to (18) and (28) a linear algebraic system for
parameters c1, c01, c02, c2, f̃1, and f̃2:

L1
1 f̃1 = A1

1 1 c1 exp(−K)

L1
0 f̃1 = A1

0 1 c01 exp(−K) + A1
0 2 c02 exp(K)

L2
0 f̃2 = A2

0 1 c01 exp(K) + A2
0 2 c02 exp(−K)

L2
2 f̃2 = A2

2 2 c2 exp(−K) (29)

c1 exp(−K) g1
1 1 = c01 exp(−K) g1

0 1 + c02 exp(K) g1
0 2

+ε K (H2
1 −H2

0 )f̃1 − ε K (V 2
1 − V 2

0 )f̃1

c2 exp(−K) g2
2 2 = c01 exp(K) g2

0 1 + c02 exp(−K) g2
0 2

+ε K (H2
2 −H2

0 )f̃2 − ε K (V 2
2 − V 2

0 )f̃2

where

Wi = ω̃ − (ViK) x1 = 1 x2 = −1

Lj
i =

{
(HiK)2 −W 2

i

}{
1 + ε K xj

ω̃ + (ViK)

Wi

}
di = K

{
1 +

(HiK)2 + W 2
i + 2Wi(ViK)

(HiK)2 −W 2
i

}
gj

i 1 = 1 +
ε

4

[
(2di + k)xj + K2x2

j

]
(30)

gj
i 2 = 1 +

ε

4

[
(2di + k)xj −K2x2

j

]
Aj

i 1 = −K gj
i 1 +

ε

4
(2di + K + 2K2xj)

Aj
i 2 = K gj

i 2 +
ε

4
(2di + K − 2K2xj)

Results

The dispersion equations are solved numerically for both
instability problems (with one and two boundaries) For the
first problem, the instability growth rate is obtained from
(25) as a function of three parameters: ka, R/a, θ. For the
second problem, the dispersion equation is determined by
(29), and the instability growth rate is obtained as func-
tion of four parameters: k, R/a, θ, U/Va2. In each plot,
the instability growth rate is normalized to the quantity
γ∗ = Ua2/a = B2/

√
4πρ a.
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Figure 2. Instability growth rate versus magnetic shear angle. Curve 1 corresponds to Rezenov and
Maltsev [1994], and curves 2 and 3 are obtained in our models with one and two boundaries, respectively.

Figure 2 shows the instability growth rate as a function
of shear angle θ for zero plasma velocity (V = 0) and differ-
ent pairs of normalized curvature radii and normalized wave
numbers: (a) R/a = 40, ka = 0.6; (b) R/a = 160, ka = 0.15;
(c) R/a = 40, ka = 0.15; (d) R/a = 160, ka = 0.6. The ratio
of the field strengths is equal to 1: n = B1/B2 = 1. The
curves denoted by (1) correspond to the model [Rezenov and
Maltsev, 1994], which deals with the instability growth rate
just for one boundary (F1), imposing the relation between
B0 and B1:

B0 = B1 sin(θ) (31)

In our model, we impose another relation between B0 and
B1:

B0 = (B1 + B2)/2 (32)

Thus the magnetopause magnetic field is determined as the
vector average of the magnetosheath and magnetosphere
magnetic fields. This relation seems to be more reasonable
because it is symmetric with respect to the fields B1 and
B2.

In Figure 2, the curves (2) correspond to our solution of
the instability problem with one boundary, while the curves
denoted by number (3) correspond to our solution of the
problem with two boundaries.

Comparing curves 1 and 2 in Figure 2, one can see that
both models have practically the same maximum growth rate
corresponding to the antiparallel magnetic fields. However,
the angle interval of the instability in our model is twice
larger than that in the model [Rezenov and Maltsev, 1994].
This is caused by the difference in relations (31) and (32)
used in the models.

Comparison of curves 2 and 3 shows that an increase of
either wave number or layer thickness makes the instability
stronger, but the angle interval of the instability becomes
smaller, and curves 2 and 3 become closer to each other.
As one can see from the plots, an increase of the curvature
radius brings about a decrease of both the maximum growth
rate and the angle interval of instability. A finite thickness of
the layer diminishes the maximum growth rate and increases
the shear angle interval.

Figures 3, 4, and 5 correspond to the problem with two
boundaries and nonzero plasma velocity (U). The magnetic
field vectors B1 and B2 are assumed to be antiparallel at
the magnetopause, and the ratio of field strengths B1/B2 is
varied in a range 0.5–1.

Figure 3 corresponds to the ratio B1/B2 = 1. This figure
shows the instability growth rate as a function of the velocity
angle α for the different normalized plasma speeds U/Ua2: 0,
0.5, 1, 1.5, and as well for different pairs (k, R) of normalized
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Figure 3. Instability growth rate versus plasma velocity angle for B1/B2 = 1.

Figure 4. (a–d) Instability growth rate versus plasma velocity angle for B1/B2 = 0.75.
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Figure 5. (a–d) Instability growth rate versus plasma velocity angle for B1/B2 = 0.5.

wave numbers and curvature radii. Figures 3a, 3b, 3c, and
3d correspond to the four pairs of (ka, R/a): (0.6, 40), (0.6,
160), (0.15, 40), (0.15, 160), respectively.

As one can see in the plots, an increase of the plasma
velocity in the direction perpendicular to the magnetic field
causes an enhancement of the instability growth rate. On the
other hand, an increase of plasma velocity directed along the
magnetic field diminishes the instability growth rate.

Comparing Figures 3a and 3b as well as 3c and 3d, we
conclude that the instability growth rate is larger for smaller
curvature radius. The latter is more pronounced for lower
velocity.

Comparing plots a and c, as well as b and d, we see that
the instability growth rate is smaller for smaller wave num-
bers.

Comparison of plots a and d shows that the growth rate is
strongly dependent on the layer thickness a for the constant
values k and R. A decrease of the thickness of the layer
brings about a substantial decrease of the instability growth
rate.

The plots of Figures 4 and 5 are similar to those of Fig-
ure 3 but correspond to the smaller values of the magne-
tosheath magnetic field strength with respect to the geo-
magnetic field: B1/B2 = 0.75, 0.5, respectively. The general
feature is that a decrease of the magnetosheath magnetic
field leads to a diminishing of the instability growth rate. In

the particular case of n = 0.5, the instability growth rate
vanishes for all three values of velocity directed parallel to
the magnetic field.

Conclusions

The growth rate of the interchange instability is studied
as a function of the magnetic shear angle, the thickness of
model magnetopause, the wave vector, and the tangential
velocity of plasma.

This instability is the strongest in a case of antiparallel
magnetic fields at the magnetopause. The instability de-
creases if the magnetosheath magnetic field deviates from
the direction antiparallel to the geomagnetic field. The
growth rate is positive within a finite angle interval of the
magnetic shear. This angle interval of the instability is
rather sensitive to the relation between the magnetopause
magnetic vector and those of the magnetosheath and magne-
tosphere regions. Determining the magnetopause magnetic
field as a vector average of the magnetosheath and magneto-
sphere magnetic fields, we obtained the instability angle in-
terval, which is twice larger than that in the model [Rezenov
and Maltsev, 1994].
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Besides the shear angle, there are four main factors that
bring about an enhanced growth rate of the interchange in-
stability at the subsolar magnetopause: (1) increase of the
thickness of the magnetopause, (2) decrease of the wave-
length, (3) decrease of the local curvature radius of the mag-
netopause, (4) plasma flow in the direction perpendicular to
the magnetic field.

The instability growth rate decreases in the case of plasma
flow along the magnetic field.

From the physical point of view, the results formulated
above can be explained in the following way. In the case
of plasma flow in the direction perpendicular to the mag-
netic field, the interchange instability determined by mag-
netic stress B2/R is enhanced by the Kelvin–Helmholtz in-
stability driven by the velocity shear. However, in the cases
studied in our paper when the velocity is directed along the
magnetic field, the Kelvin–Helmholtz instability does not ex-
ist because of the stabilizing role of magnetic stress, and the
interchange instability is weakened by the centrifugal force
which is proportional to the velocity squared and the curva-
ture of the surface.

Applying the results described above to the particular
case of the southward IMF, we conclude that the growth rate
of the interchange instability must decrease in the meridional
plane of the magnetosphere because of plasma flow along the
magnetic field. On the other hand, the growth rate must
increase in the equatorial plane because of plasma motion in
the direction perpendicular to the magnetic field.

Taking the parameters B2 = 60 nT, B1 = 30 nT, n =
5 cm−3, a = 400 km (total width of the layer equal to
800 km), R = 10 RE for wave lengths λ = 2.6 RE , we
obtain the following estimate for the characteristic time of
the instability: τ = a/(γ̃UA) = 116 s for zero velocity, and
τ = 33 s for velocity U = 300 km s−1 directed perpendicular
to the magnetic field.

The instability can evolve into a nonlinear stage, if the
growth time τ is much less than the time tc of plasma con-
vection along the dayside magnetopause. Using a rough es-
timate of the convection time tc ∼ R/U , we find the ratios
τ/tc ∼ 0.1 and τ/tc ∼ 0.35 for the equatorial and meridional
regions of the magnetopause, respectively. This means that
the perturbations caused by the interchange instability can
reach a nonlinear stage at the dayside magnetopause for the
southward IMF.

The interchange instability of the magnetopause seems to
be an important process, which brings about the transfer
of magnetic flux tubes through the magnetopause. Finally,
this might cause an enhanced magnetic field diffusion at the
high shear magnetopause, which in its turn can initiate the
reconnection process.
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