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[1] The problem on determination of the electromagnetic field of a near-Earth horizontal
electric dipole in the frequency range 10−1 − 103 Hz at distances 10−1 − 103 km in the
Earth–ionosphere waveguide has been solved. The ionosphere is assumed to be horizontally
stratified and anisotropic, and the Earth is assumed to be homogeneous to some depth and
infinitely conducting below. The representation of the electromagnetic field as expansion in
waveguide modes is given. The zero mode is regarded as anisotropic. Local modes are given
in the isotropic approximation of the anisotropic ionosphere due to inclusion of an effective
exponential conductivity profile. An analytical description of the field reflection for vertical
and horizontal polarizations has been obtained for this model. At short distances from the
source, the solution coincides with the known solution for the case of the absence of the
ionosphere. The range of distances beginning from which the influence of the ionosphere
on the near-Earth magnetic field manifests itself has been found. INDEX TERMS: 6964 Radio
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1. Introduction

[2] The paper is concerned with the problem of calcula-
tion of the electromagnetic field of a near-Earth horizontal
electric dipole in the frequency range below 1 kHz at dis-
tances less than 1 Mm in the Earth–ionosphere waveguide.
The waveguide is formed by the Earth characterized by the
conductivity and the ionosphere. The electrical properties of
the ionosphere are determined by the vertical profiles of the
electron density and effective collision frequency of electrons
with neutral particles and by the Earth’s magnetic field. At
heights 30–80 km, the ionospheric conductivity has to be
specified. In the frequency range 0.1–5 Hz, it is required
that the ion collision frequency with neutral particles and
the profiles of the positive ion mean mass be additionally
specified. The upper wall of the waveguide formed by the
ionosphere is, therefore, anisotropic and horizontally inho-
mogeneous. The waveguide inhomogeneity is mainly due to
the variability in the electrical properties of the ionosphere
on transition from night to day. Some contribution to the
waveguide inhomogeneity comes from the dependence of the
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Earth’s magnetic field on the horizontal coordinate. Owing
to the restriction of the field calculation domain to 1 Mm,
the homogeneous waveguide model can be used since there
is little probability that the day-night transition will fall into
this domain and the dependence of the electrical properties
of the ionosphere on the Earth’s magnetic field may be ne-
glected because of its weak variability within a distance of
1 Mm along the Earth’s surface. However, in the general
case the effect of sphericity on the field in the vicinity of the
source cannot be neglected. Indeed, the vertical component
of the electric field Er of a vertical electric dipole P0 in a
homogeneous spherical cavity of height h in the one-mode
approximation has the form [Watson, 1919]

Er = −ν(ν + 1)P0

4ε0a2h

Pν [cos(π − θ)]
sin(νπ)

where ε0 is the dielectric permeability of the vacuum, a is the
Earth’s radius, and Pν(x) is the Legendre function [Bateman
and Erdelyi, 1953]. Symbol ν is related to the propagation
constant S by ν(ν + 1) = k2a2S2, k = ω/c being the wave
number in vacuum. The propagation constant S having the
dependence on time of the form exp(−iωt) is related to the
ionospheric conductivity σi as S2 = 1 + [(1 + i)/h

√
2ωµ0σi],

where µ0 is the magnetic permeability of the vacuum.
[3] In a plane waveguide, the vertical component of the

vertical electric dipole P0 is expressed through the cylindrical
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function H
(1)
0 (kSaθ) [Jahnke et al., 1960]

Ep
r =

ik2S2P0

4ε0h
H

(1)
0 (kSaθ) (1)

[4] To describe the field in the neighborhood of the source,
the Legendre function can be substituted by its expression
which can be used if its argument is in the vicinity of “− 1”
[Bateman and Erdelyi, 1953]

Pν [cos(π − θ)]
sin νπ

=
1

π
[2Ce + 2ψ(ν + 1)+

π cot νπ + 2 ln(sin θ/2)]

where ψ(ν + 1) is the logarithmic derivative of the Gamma
function, and Ce = −ψ(1) is the Euler constant. Similarly,
the Legendre function can be replaced by its expression with
small arguments [Jahnke et al., 1960], which allows compa-
rison of the vertical component in a spherical waveguide with
its plane approximation (1)

Er − Ep
r = −ν(ν + 1)P0

4πε0a2h
[iπ + 2ψ(ν + 1)+

π cot νπ − ln ν(ν + 1)]

Near the source their difference is a frequency-dependent
constant. In the vicinity of the first Schumann frequencies
this constant becomes high. As frequency increases, the con-
stant tends to zero because of a complexity of ν, which oc-
curs in the Earth–ionosphere waveguide at frequencies above
100 Hz. The tangential components of the magnetic field
and the electromagnetic field of a horizontal electric dipole
in the vicinity of the source can be described by the plane
waveguide approximation.

[5] At distances ρ exceeding a triple effective waveguide
height h, only the field of one leading quasi-TEM mode is left
in the electromagnetic field of a point source [Madden and
Thompson, 1965; Wait, 1962]. This mode is found by numer-
ical integration of a system of ordinary differential equations
following from the Maxwell equation [Galyuk and Ivanov,
1978; Hynninen and Galyuk, 1972; Jones, 1967; Kirillov and
Kopeykin, 2002, 2003; Kirillov et al., 1997; Krasnushkin and
Yablochkin, 1963; Madden and Thompson, 1965; Pappert
and Miler, 1974] or analytically [Greifinger and Greifinger,
1978, 1979, 1986; Kirillov, 1972, 1978, 1993, 1996, 1998; Kir-
illov and Pronin, 1974]. Only numerical calculations yield
the results corresponding to the real model of the ionosphere.
However, the analytical consideration of the reflection from
the ionosphere allows understanding of the results obtained
in numerical calculations and is suitable by itself for a simple
exponential model of the ionosphere describing adequately
the actual situation in some cases. In the analytical descrip-
tion which will be given below for the isotropic model of
conductivity, two complex heights are introduced, i.e., the
capacitance height

hC =

∞∫
0

dz

(1 + z/a)2 [1 + iσi/(ωε0)]

which plays the role of a normalization integral for the lead-
ing TEM mode and inductance height hL. By the real part,
the capacitance height is always lower than the inductance
one. In the exponential model of the ionospheric conductiv-
ity, RehC is approximately equal to the height at which the
conduction currents are equal to the displacement currents,
and an approximate estimate of the height hC itself is ob-
tained from the equation iσ(hC)/(ωε0) = 1 [Greifinger and
Greifinger, 1978; Kirillov, 1972, 1978; Kirillov and Pronin,
1974]. The upper inductance height hL is deduced in this
case from [Kirillov, 1972, 1978; Kirillov and Pronin, 1974]

σ(hL)

ωε0
= i

(
α

kγ

)2

(2)

where α = d/dz lnσi. Greifinger and Greifinger [1978] also
considered two similar heights, i.e., h1 and h2, but the equa-
tion for the second height included in its right-hand side
α/2k instead of α/ky, which led to a systematic error of the
order of 1 km in its determination.

[6] With two heights introduced above, the surface impe-
dance of the ionosphere at the level of the Earth’s surface at
|khC | � 1 can be written as

δi = −ik(hL − hCS
2) (3)

where S is the sine of the wave incidence angle near the
Earth’s surface. With this ionospheric impedance and ide-
ally reflecting Earth, the eigenvalue (propagation constant
S) is given by S2 = hL/hC .

[7] In the general case of an anisotropic ionosphere, the
inductance height hL is a matrix expressed through the
ionospheric impedance at the Earth’s surface level at nor-
mal wave incidence hL = iδi(0)/k. This matrix is obtained
by numerical integration over the region of the ionosphere
responsible for radio wave reflection. The region extends
to 2 Mm in the frequency range 0.1–5 Hz [Kirillov and
Kopeykin, 2002, 2003]. For the plane homogeneous model of
the waveguide, the two heights introduced above allow one
to express the electromagnetic field of a horizontal electric
dipole at the Earth’s surface through the first function of the
zero order and its derivatives [Kirillov and Kopeykin, 2002].
In the general case these expressions are rather cumbersome.
Below we give the fields for the anisotropic ionosphere but
exhibiting an azimuthal symmetry, which is realized for the
real Earth–ionosphere waveguide at frequencies above 5 Hz:

Ez = − iIlkSZ0δg

4hC

(
cosϕ+

hL,xy

hL,xx
sinϕ

)
Ḣ

(1)
0 (ξ)

Hz = −
iIlkSδ2g

4hC

hL,xy

hL,xx

(
cosϕ+

hL,xy

hL,xx
sinϕ

)
Ḣ

(1)
0 (ξ) (4)

Hϕ = −Ilkδg

4hC

{[
H

(1)
0 (ξ)+

(
1 +

h2
L,xy

h2
L,xx

)
ξ−1Ḣ

(1)
0 (ξ) cosϕ+
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hL,xy

hL,xx
H

(1)
0 (ξ) sinϕ

]}

Hρ =
Ilkδg

4hC

{[
ξ−1Ḣ

(1)
0 (ξ)+

h2
L,xy

h2
L,xx

[
H

(1)
0 (ξ) + ξ−1Ḣ

(1)
0 (ξ)

]]
sinϕ+

hL,xy

hL,xx
H

(1)
0 (ξ) cosϕ

}

Eρ = −Z0δgHϕ Eϕ = Z0δgHρ

S2 =
1

hC(h−1
L )xx

where Il is the current moment of the horizontal dipole ori-
ented along the x axis of the Cartesian coordinate system
{x, y, z}. Angle ϕ is counted off from this axis in the di-
rection of y, and ρ is the distance from the dipole. The
elements of the matrix inductance height hL satisfy the con-
ditions hL,xy + hL,yx = 0 and hL,xx = hL,yy. The point
above the function implies differentiation with respect to its
argument. For |kρ| � 1, expression (4) transforms into

Ez =
IlZ0δg

2πρ

(
cosϕ+

hL,xy

hL,xx
sinϕ

)

Hz =
hL,xy

hL,xx
δgZ

−1
0 Ez

−Hϕ =
iIlδg

2πkρ2hL,xx
cosϕ

Hρ =
iIlδg

2πkρ2hL,xx
sinϕ

The magnetic field in the vicinity of the horizontal electric
dipole is independent of the capacitance height hC .

[8] It should be noted that in the general case of the iono-
sphere anisotropy, when the dielectric permeability tensor
in the region responsible for radio wave reflection depends
on the vertical component of the Earth’s magnetic field and
also exhibits an appreciable dependence on its horizontal
components, the propagation constant enters the function
argument with a multiplier cosα. Angle α is the angle
between the beam direction coinciding in a homogeneous
medium with the direction from a transmitter to a receiver
and the direction of the horizontal wave propagation gradi-
ent [Born and Wolf, 1964]. The general anisotropy is real-
ized in the Earth–ionosphere waveguide at frequencies below

5 Hz. Greifinger and Greifinger [1986] did not take into ac-
count the multiplier cosα in the argument of the function
in the case of the general ionosphere anisotropy, which is
incorrect.

[9] At short distances from the source, not exceeding a
half of the effective waveguide height, the ionosphere does
not affect the near-Earth electromagnetic field. In geoelec-
trical prospecting, in the case of a homogeneous model of
the ground conductivity, the horizontal components of the
magnetic field at kρ � 1 are calculated using the formu-
lae of Baños [1966], Fok and Bursian [1926], Bursian [1972],
Vanyan [1997], and Wait [1961]

−Hϕ =
iIl cosϕ

4ρ2
J̇0(ξ)Ḣ

(1)
0 (ξ) (5)

Hρ =
iIl sinϕ

4ρ2

[
3J̇0(ξ)Ḣ

(1)
0 (ξ)+

ξ
(
J̇0(ξ)H

(1)
0 (ξ) + J0(ξ)Ḣ

(1)
0 (ξ)

)]
Here, ξ = kρ

√
ε′g/2, where ε′g is the complex relative dielec-

tric permeability of the ground ε′g = εg +(iσg/ωε0). At such
short distances the observation point is close to the source
being no longer an elementary dipole. The electromagnetic
field of a distributed source is obtained by summing the fields
of the dipoles into which the source is divided according to
the current distribution through it.

[10] In the case

|ξ| � 1 and |ε′g| � 1

−Hϕ =
Il cosϕ

4πρ2
Hρ =

Il sinϕ

4πρ2
(6)

The magnetic field is independent of the ground conductiv-
ity and decreases inversely proportionally to the square of
the distance from the source. At |ξ| � 1, i.e., at the dis-
tance from the source equal to several Earth’s skin layers,
the expression for the field acquires the form

−Hϕ =
iIlδg cosϕ

2πkρ3

Hρ =
iIlδg sinϕ

πkρ3
(7)

The magnetic field decreases in this zone inversely propor-
tionally to the cube of the distance from the source. By
the modulus, the longitudinal component Hρ turns out to
be twice as high as the component Hϕ. At intermediate
distances h/2 < ρ < 2h there is a transition region, at the
lower boundary of which the electromagnetic field is nearly
independent of the ionosphere and whose upper boundary
coincides with the field of the only waveguide wave that
propagates (zero normal wave). This paper describes the
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electromagnetic field in the transition region. This problem
has been considered and solved by Bannister and Williams
[1974], Galeys [1968], and Wait [1962] by the method of sum-
mation of jumps in the case of an ideally reflecting iono-
sphere of height h. According to Bannister and Williams
[1974], the horizontal components of the magnetic field in
the transition region are given by

−Hϕ =
iIlδg cosϕ

2πkρ3
G(t)

Hρ =
iIlδg sinϕ

2πkρ3
H(t) (8)

where

G(t) =
2t

π
coth(t) + (1− 2

π
)t2 sinh−2(t)

H(t) = G(t) + t3 sinh−2(t) coth(t)

and

t =
πρ

2Re hL

[11] In contrast to Bannister and Williams [1974], the
height RehL is used here instead of h because this height cor-
responds most of all to the wave reflection height. The solu-
tion of the problem on the field in the transition region given
by Bannister and Williams [1974] has a significant drawback.
At low t, the formulae for the field transform into the ex-
pressions describing the field decrease inversely proportional
to the cube of the distance from the source (≈ ρ−3) derived
for the case of the absence of the ionosphere. At high t the
formulae given above transform into the expressions for the
quasi-static field of the leading normal wave in an isotropic
waveguide. Actually, depending on the parameters of the
problem, i.e., the frequency and ground conductivity, even
at t � 1 the distance to the source can prove to be less or
of the order of the Earth’s skin layer, and then the field de-
creases as ρ−2. In the upper part of the transition region at
frequencies below 10 Hz, the anisotropy of the medium has
to be taken into account. Moreover, the upper boundary of
the region is not always in the static zone. The use of the
model with an effective height as the ionosphere model is
not justified as well.

[12] It is worth noting that Bannister [1986] expanded
the transformation of the expression for the field into the
expression for the zero normal wave to the case when the
upper boundary of the transition region falls into the wave
zone. The problem on the electromagnetic field in the transi-
tion region was also considered by Saraev and Kostin [1998].
They presented the field in the form of weakly converging
integrals of Bessel functions, and the ionosphere model was
described by a homogeneous isotropic conductivity.

[13] Thus the problem of description of the field in the
transition region is still important. Below, this problem is
solved by representing the field as a sum of normal waves,
including local ones.

Table 1. Profile Parameters

Conditions z, km σ(z), 10−9 S m−1 d

dz
lnσ, km−1

Day 50 2.08 0.29
Night 75 2.03 0.35

2. Waveguide Model

[14] The ground is characterized by a constant conductiv-
ity σg. The ionosphere has in its lower part an exponential
conductivity profile σ(z) which is different for day and night.
The profile parameters are listed in Table 1.

[15] Mushtak and Williams [2002] also characterize the
conductivity model by an exponent but having different pa-
rameters above and below a height of 55 km, which is likely
to describe more adequately the lower ionosphere. The rep-
resentation of the ionosphere as an exponential conductivity
profile leads to a logarithmic dependence of the real part of
the capacitance height on frequency [Greifinger and Greifin-
ger, 1978; Kirillov and Pronin, 1974; Kirillov et al., 1997]

Re hC(f) = Re hC(f1) + α−1
C ln(f/f1)

where α−1
C is the scale of variations in the ionospheric con-

ductivity profile. The imaginary part of the capacitance
height is negative; it is related to the scale α−1

C and is inde-
pendent of frequency ImhC = −π/(2αC). From the conduc-
tivity profile with the parameters given in Table 1, we obtain
for a frequency of 50 Hz the following capacitance heights:
hC = (51.0 − i5.4) km and hC = (75.9 − i4.5) km for day
and night, respectively.

[16] The frequency model of the matrix local ionospheric
inductance for four models of the ionosphere (day and night
at low and high solar activity levels) was presented by Kir-
illov and Kopeykin [2003]. The ionosphere model specifies
profiles of electron density, effective collision frequency of
electrons and ions with neutral particles, and the average
mass of positive ions. In the frequency range 0.1–5 Hz,
the region responsible for reflection extends to a height
of the order of 2 Mm. At lower frequencies the function
h̃L =

√
DethL is a convenient isotropic approximation of

the matrix local inductance. The graphs of this function
versus frequency for two different conditions are given in
Figures 1–4.

[17] In addition, h̃L is used to synthesize the effective expo-
nential conductivity profile of the ionosphere, so Reh̃L is con-
sidered to be equal to the real part of the inductance height
at which the conductivity is σ = ωε0(α/(kγ))

2 and the scale
of variations in the conductivity profile is α = π/(2Imh̃L).
The effective conductivity profile is used only to describe lo-
cal modes which are treated in the isotropic approximation
alone. The use of the effective conductivity profile for the
description of the local inductance as a function frequency is
similar to that presented by Mushtak and Williams [2002].
Parameters of the effective profile of conductivity are ob-
tained by some approximation of the anisotropic ionosphere.
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Figure 1. Dependence of Re h̃L and Im h̃L on frequency under nighttime conditions. Frequencies are
from 0.2 to 5 Hz.

3. Horizontally Polarized Modes

[18] We assume that ∂/∂x = ikS and ∂/∂y = 0. Then for
the horizontally polarized electromagnetic field, the system
of Maxwell equations yields the following system of ordinary
differential equations with respect to the vertical z coordi-
nate:

1

ik

d

dz
Ey = −Z0Hx

1

ik

d

dz
(−Z0Hx) = (ε′ − S2)Ey (9)

Z0Hz = SEy

Ez = Z0Hy = Ex = 0

Figure 2. Dependence of Re h̃L and Im h̃L on frequency under nighttime conditions. Frequencies are
from 2 to 20 Hz.

which is reduced to one second-order differential equation
for the Ey component[

d2

dz2
+ k2(ε′ − S2)

]
Ey = 0

In the case of the exponential conductivity profile, when
d/dz ln(ε′ − 1) = α is independent of z, this equation is
reduced exactly to the Bessel equation(

ξ−1 d

dξ
ξ
d

dξ
+ 1 +

µ2

ξ2

)
Ey = 0

ξ =
2k

α

√
ε′ − 1

µ = 2kC/α
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Figure 3. Dependence of Re h̃L on frequency under daytime conditions.

S2 + C2 = 1

Its solution satisfying the principle of a sufficient field de-
crease at z →∞ is the first function H

(1)
−iµ(ξ).

[19] At the Earth’s surface, |ξ| � 1. The ionospheric
reflection coefficient at the Earth’s surface is given by

Ey(0) = A(1 +R⊥i )

−Z0Hx(0) = CA(1−R⊥i )

By representingH
(1)
−iµ(ξ) through Bessel functions Jiµ(ξ) and

Figure 4. Dependence of Im h̃L on frequency under daytime conditions.

J−iµ(ξ) [Jahnke et al., 1960], we get for the ionospheric re-
flection coefficient R⊥i at the Earth’s surface

R⊥i (C) = R⊥hL
exp(2ikhLC)

where

−R⊥hL
(C) =

Γ(1 + iµ)

Γ(1− iµ)
exp(2iCeµ)

Ce = ln γ is the Euler constant, and R⊥hL
is the reflection

coefficient referred to the complex height hL derived from
the equation 1− ε′(hL) = [α/(kγ)]2. Here and in below, the
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sign “∼” above height parameters of the isotropic conductiv-
ity profile h̃L and h̃C is omitted in the description of local
normal waves of both polarizations. The reflection coeffi-
cient R⊥hL

is independent of the total ionosphere height. It

depends only on variable µ = 2kC/α alone, so R⊥hL
(0) = −1.

[20] At |µ| � 1

ln(−R⊥hL
) ∼= −iµ3ψ′′(1)/3 =

2iµ3ζ(3)/3 = 0.8013709iµ3 (10)

where ψ′′(1) is the third derivative of the logarithm of
Gamma function with the argument equal to unity, and
ζ(3) is the Riemann Zeta function. At |µ| � 1, Stirling
asymptotics can be used for the Gamma function entering
the general expression for the reflection coefficient. Under
this condition the reflection region is in the vicinity of the
complex turning point h0 [Kirillov et al., 1993]

1− ε′(h0) = C2 (11)

h0 = hL + 2α−1(Ce + lnµ/2)

The coefficient of wave reflection from the ionosphere re-
ferred to the Earth’s surface is written as

R⊥i (0) = exp(− iπ
2

+ 2ikCh⊥ph) (12)

where

h⊥ph = h0 − 2α−1(1− ln 2) = h0 − 0.613706α−1

[21] To find the normalization integral, it is also neces-
sary to calculate the derivative of the ionospheric reflection
coefficient near the Earth’s surface with respect to C

∂

∂C
R⊥i = 2ikh⊥trR

⊥
i (13)

where h⊥tr = hL +[2Ce +ψ(1+ iµ)+ψ(1− iµ)] is the triangu-
lation height. At |µ| � 1 h⊥tr = hL + 1.202056µ2α−1 and at
|µ| � 1 and Reµ > 0 h⊥tr ∼= h0 +1.386294α−1. The real part
of the triangulation height h⊥tr is somewhat higher than the
real part of the turning point height h0, and the real part of
the phase height h⊥ph is somewhat lower.

[22] We assume that the complex dielectric permeability
of the ground is constant and is equal to ε′g = εg + iσ/(ωω0).
We also assume that at depth hg there is an ideally reflecting
surface, the introduction of which allows us to avoid the
appearance of a continuous part in the spectrum of normal
waves [Kirillov and Kopeykin, 1989]. In addition, the ideally
reflecting surface at depths 70–100 km simulates the Earth’s
mantle.

[23] The impedance of a horizontally polarized wave at
the Earth’s surface is given by

δ⊥g = − i√
ε′g − S2

tan
(
khg

√
ε′g − S2

)
(14)

The coefficient of reflection from the Earth’s surface in the
case the wave propagates downward is

−R⊥g =
1− Cδ⊥g
1 + Cδ⊥g

or

−R⊥g =
R∞⊥ + exp(2ikhg)

√
ε′g − S2

1 +R∞⊥ exp(2ikhg)
√
ε′g − S2

where R∞⊥ = (ε′g−1)(C+
√
ε′g − S2)−2 is the wave reflection

coefficient from an infinitely conducting surface.
[24] The characteristic equation for finding parameters of

normal waves can be represented in the form R⊥g R
⊥
i = 1 or,

after taking the logarithm, as

CkhL −
i

2
[ln(−R⊥hL

) + ln(−R⊥g )] = mπ, m = 1, 2, ... (15)

Under conditions |khg

√
ε′g − 1| � 1 and |C2| � |ε′g−1|, the

characteristic equation (15) has the approximate solution

C⊥m = mπk−1

(
hL +

i

k
√
ε′g − 1

)−1

(16)

from which one can see that the effective waveguide height
is Re hL + (2ωµ0σg)−1/2. Thus, under these conditions, the
effective waveguide height also depends on the Earth’s skin
layer. As the mode number increases, the reflection height
region rises to the turning point region and C2 becomes com-
parable to |ε′g−1|, which gives the eigenvalues differing from
equation (16). The eigenvalues are found in this case by
numerical solution of equation (15). As the mode number
further increases, the inequality |C2

m| � |ε′g − 1| is satisfied,
which allows one to describe the eigenvalues by the approx-
imation

C⊥m =
(m− 1/4)π

k(h⊥ph + hg)
(17)

under the condition

π2hgm|Reh⊥ph + hg|−2 < 2 ln[mπk−1(Reh⊥ph+

hc|
√
ε′g − 1|)−1]

In this case the waveguide is formed between the height
Reh⊥ph and depth hg.

[25] For horizontally polarized electromagnetic waves, the
eigenfunctions in which the field is expanded have the mean-
ing of the horizontal component Ey (9). Let us denote them
as U⊥m(z). It is convenient to introduce the normalization
integral by the relation

h⊥N,m =

[
1

C⊥mk

dU⊥m
dz

(0)

]−1
∞∫

−hg

U⊥2
m (z)dz =
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Figure 5. Real parts of eigenvalues of the first 250 numbers.

(
C⊥mδ

⊥
g (C⊥m)

U⊥m(0)

)2
∞∫

−hg

U⊥2
m (z)dz

The availability of analytical expressions for R⊥i (C) and
R⊥g (C) allows one to find the analytical expression for the
normalization integral

2h⊥N,m =
ε′g − 1

ε′g − (S⊥m)2

(
h⊥tr +

iδ⊥g
k

)
+

(C⊥m)2(h⊥tr + hg)

(ε′g − (S⊥m)2) cos2
(
khg

√
ε′g − (S⊥m)2

)
The convenience of the normalization we have chosen is due
to the fact that in the region where the eigenvalues are de-
scribed by equation (16), that is, when the waveguide is
formed by the Earth’s surface and the height of the wave
reflection from the ionosphere, the normalization integral
h⊥N,m is approximately equal to 2h⊥N,m

∼= h⊥tr + iδ⊥g k
−1. In

the region for which formula (14) is valid, that is, when the
waveguide is efficiently formed by the reflection height and
the depth at which the ideally reflecting surface is assumed
to be lying, the normalization integral is proportional, as
before, to the waveguide thickness h⊥tr + hg.

2h⊥N,m
∼= (h⊥tr + hg) cos−2

(
khg

√
ε′g − (S⊥m)2

)
The presence of an additional multiplier is explained by the
fact that the function to which the integral of the square
of the eigenfunction is referred is not distinguished by the
physics of waveguide formation when its width is equal to
the sum of heights h⊥tr + hg.

[26] The graphs of eigenvalues and corresponding normal-
ization integrals as functions of mode number are given in
Figures 5–8. The eigenvalues and normalization integrals of
the modes with a horizontal polarization are characterized
by a complicated dependence on the mode number.

4. Reflection of Vertically Polarized Waves
at 2k/α < 0.1 and Small Parameter 2kC/α

[27] We assume that ∂/∂x = ikS and ∂/∂y = 0. Then for
the vertically polarized electromagnetic field, the system of
Maxwell equations yields the following system of ordinary
differential equations with respect to the vertical z coordi-
nate:

1

ik

d

dz
Ex = (1− S2/ε′)Z0Hy

1

ik

d

dz
(Z0Hy) = ε′Ex (18)

Ez = −S
ε′
Z0Hy

Z0Hz = Z0Hx = Ey = 0

It is assumed that there is an exponential conductivity pro-
file in the ionosphere, i.e., d/dz ln(ε′−1) = α is independent
of z.

[28] The problem on reflection of vertically polarized waves
for the case of a restricted parameter C (C2 + S2 = 1) was
described by Greifinger and Greifinger [1978, 1979] and Kir-

illov and Pronin [1974]. The ionospheric impedance δ
‖
i at the

Earth’s surface at 2k/α < 0.1 and khC < 0.1 is given in this
case by

δ
‖
i (C2) = −ik(hL − hCS

2) (19)

[29] Let us consider that at the height h the impedance δ
‖
h

and between this height and the surface of the Earth there is
vacuum. The ionospheric impedance at the Earth’s surface
is calculated from the impedance δ

‖
h as

δ
‖
i (C2) =

δ
‖
h − iC tan(kCh)

1− i
δ
‖
h

C
tan(kCh)

(20)

Figure 6. Imaginary parts of eigenvalues.
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So, to describe the reflective properties of the ionosphere in-
stead of impedance on the Earth’s surface δi(C

2) it can be

used the impedance δ
‖
h related to some height. Both descrip-

tions are equivalent though the impedance at the Earth’s
surface and the corresponding impedance at the height h
are different functions of C2. If we refer the impedance to
the complex height hC , the impedance at this height will be
given by

δ
‖
hC

= −ik(hL − hC) (21)

Under the condition |khC | � 1 according to equation (20)
taking the impedance (21) we obtain on the Earth’s surface
the impedance (19). In the approximation used by Greifin-
ger and Greifinger [1978, 1979] and Kirillov and Pronin
[1974] the impedance, referred to the complex height hC , at
this height is independent of the wave incidence angle while
the impedance at the Earth’s surface depends on the angle of
incidence. So, the problem can be formulated in such form
as if inside the waveguide instead of the ionosphere there
is vacuum and the complex height hC is the upper bound-
ary of the waveguide. Such method of introduction of the
impedance at the complex height hC allows us to discuss the
wave reflection from the inhomogeneous ionosphere without
restriction |khC | � 1. In the discussed approximation 2k/α
is a small parameter and |C| is of order of unity.

[30] In the problem we plan to consider in the local modes
|C| � 1. To expand the presented description on complex
angles of incidence it is required to find the corrections to
the impedance in the third order of smallness of 2k/α. With
this purpose we divide the ionosphere into two parts: the
lower region that corresponds to the interval [0, h1] and the
upper region z ≥ h1. Let us choose the height h1 in such
a way that the modulus of ξ = 2kα−1

√
ε′ − 1 should be

small at his height and at the same time the following con-
dition |ξ1| � 2k/α should be fulfilled. The smallness of |ξ|
at the lower boundary of the upper region means that this
boundary is situated below the reflection height of the wave.
Discussing the upper region let us turn from the system of
equations (18) to the equation for the impedance which can
be presented in the form

Figure 7. Real part of the normalization integral of the
first 40 modes.

Figure 8. Imaginary part of the normalization integral.

− d

dαz
u = 1− (2kS/α)2

ξ2 + 4k2/α2
+

(
ξ2

4
+
k2

α2

)
u2

δ =
Ex

Z0Hy
= − ik

α
u (22)

As compared with the system of differential equations (18),
equation (22) is a nonlinear equation of the Rikkaty type.

[31] For normal incidence the distinction between the ver-
tical and horizontal polarizations vanishes. The problem of
reflection of the wave polarized horizontally in the case of
exponential profile of conductivity is reduced to the Bessel
equation as it follows from the solution of equation (18). For
normal incidence the function u0 is described by the formula

u0 = −2
H

(1)

−2ik/α(ξ)

ξḢ
(1)

−2ik/α(ξ)
(23)

The point above the symbol of the Hankel function means
differentiation with respect to the argument of this function.
In the case |ξ| � 1 it follows from formula (23) that

u0 = X1 −
ξ2

4
(2 + 2X1 +X2

1 ) +
k2

3α2
(−4ψ′′ +X3

1 )

where ψ′′ is the third derivative of the logarithm of the
Gamma function with the argument equal to unity, X1 =
α(hL − h1). The last term in this formula presents the
impedance at the normal incidence in the next order of small-
ness with respect to 2k/α. The derivative with respect to
S2 of the function u has the same order of smallness. Let us
introduce u1 = (α2/k2)(∂u/∂S2). As a function of z, u1 is
the solution of the following linear differentiation equation:

d

dαz
u1 =

1

ξ2/4 + k2/α2
− 2(ξ2/4 + k2/α2)uu1

which is obtained from equation (22) by differentiation with
respect to S2. The solution of this equation that satisfies
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the limiting condition at z → +∞ is given by

u1 = −
∞∫

αz1

dαz

ξ2/4 + k2/α2
×

exp

2

αz∫
αz1

(ξ′2/4 + k2/α2)u(αz′)dαz′


Within the whole region of integration the relation 2k/α�
|ξ| is fulfilled. This allows us to simplify the solution and to
present it in the form

u1 = −4

∞∫
αz1

ξ−2dαz exp

0.5

αz∫
αz1

ξ′2u0(αz
′)dαz′

 (24)

The derivative with respect to S2 is considered at S = 0. It
allows us to substitute u by u0 determined by formula (23)
in which it was taken k = 0. To determine the function u1 at
small αz it is possible to present the exponent under integral
in (24) as a series and to retain the first two terms as the
rest terms give infinitesimal input for αz → 0. As a result
we arrive at the expression

u1 = −4ξ−2
1 − 2

∞∫
αz1

u0(αz)dαz

The investigation of asymptotic for αz → 0 allows us to
obtain the following explicit expression for u1

u1 = −4ξ−2 + C −X2
1

where the constant C is obtained as a limit

C = lim
ξ→0

4 log2(γξ/2) + 8

∞∫
ξ

K0(ξ
′)

ξ′2K̇0(ξ′)
dξ′


and

X = αhL − αh1

K0(ξ) =
iπ

2
H

(1)
0 (ξ exp

iπ

2
)

The constant C was calculated numerically and its value was
found to be −11.040912.

[32] Collecting together the obtained results we find for
the impedance at the lower boundary of the upper region

δ1 = − ik
α

[
X1 −

(
ξ

2

)2

(2 + 2X1 +X2
1 )+

k2

3α2
(−4ψ′′ +X3

1 )−
(

2kS

αξ1

)2

+
(
kS

α

)2

(C −X2
1 )

]
(25)

[33] In the region below a height of h1, the wave propa-
gates upward and then reflects back. The description of the
wave propagation in this region is not reduced to known spe-
cial functions. Kirillov and Pronin [1974] used the method
of successive approximations to get a rough estimate of the
ionospheric impedance (19) at the Earth’s surface level.

[34] In order to describe the dependence of impedance on
S2 at the complex height hC , it is necessary to derive the
expression for it in the third order of smallness with respect
to (2k/α). Let us write the system of equations (18) in the
form of a formally vector equation

1

ik

dU

dz
= AU (26)

U = {Ex, Z0Hy}T A11 = A22 = 0

A12 = 1− S2

ε′
A21 = ε′

Vector U at the Earth’s surface is calculated from vector Uh1

at height h1 by left multiplication by the matrix Km(0, h1)
which satisfies matrix differential equation (26) with respect
to the first argument and is reduced to a unit matrix if the
arguments are equal, i.e.,

1

ik

d

dz
Km(z, h1) = AKm(z, h1)

where Km(h1, h1) = 1. In the back integration from the
Earth’s surface to the complex height hC , it is assumed
that the right-hand side of equation (26) corresponds to
the vacuum (sign υ), Aυ,11 = Aυ,22 = 0, Aυ,12 = C2, and
Aυ,21 = 1. Let us denote the transformation matrix in this
case as Kυ(z, 0). Then the vector at height hC sought for
will be written as UhC = Kυ(hC , 0)Km(0, h1)Uh1 .

[35] Matrixes Km(z, h1) and Kυ(z, 0) are found by succes-
sive approximations, i.e.,

Km(0, h1) = 1 +K(1)
m (0, h1) +K(2)

m (0, h1) +K(3)
m (0, h1)

where

K(1)
m (0, h1) = −ik

h1∫
0

A(z)dz

K(2)
m (0, h1) = −k2

h1∫
0

A(z)dz

h1∫
z

A(z′)dz′

and

K(3)
m (0, h1) = ik3

h1∫
0

A(z)dz

h1∫
z

A(z′)dz′

h1∫
z′

A(z′′)dz′′

Similarly,

K(1)
υ (hC , 0) = ik

hC∫
0

Aυdz = ikhCAυ
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K(2)
υ (hC , 0) = −(1/2)k2h2

CA
2
υ

and

K(3)
υ (hC , 0) = −(i/6)k3h3

CA
3
υ

If we denote the matrix of transformation from h1

to hC through the Earth’s surface as K(hC , h1) =
Kυ(hC , 0)Km(0, h1) and present it in the form of a series
of successive approximations, its terms will be

K(1) = K(1)
υ +K(1)

m

K(2) = K(2)
υ +K(2)

m +K(1)
υ K(1)

m

K(3) = K(3)
υ +K(3)

m +K(1)
υ K(2)

m +K(2)
υ K(1)

m

Cumbersome and labor-consuming calculations yield fairly
simple expressions for the elements of the matrix K(1)

K
(1)
11 = K

(1)
22 = 0

K
(1)
12 = −ik(h1 − hC)− ikS2α−1(ε′1 − 1)−1

and

K
(1)
21 = −ik(h1 − hC)− ik(ε′1 − 1)α−1

These elements are of the first order of smallness with re-
spect to parameter 2k/α and are independent of the total
ionosphere height. They depend on the height difference
alone.

[36] The matrix K(2) is of the second order of smallness
and its nonzero elements are only on the principal diagonal

K
(2)
11 +K

(2)
22 = K

(1)
12 K

(1)
21

K
(2)
12 = K

(2)
21 = 0

and

K
(2)
22 = −(1/2)k2(h1 − hC)2 − k2(ε′1 − 1)α−2+

k2S2α−2
[
π2/6 + α(h1 − hC)− α(h1 − hC)(ε′1 − 1)−1

]
The elements of this matrix are also independent of the total
effective ionosphere height. To obtain the impedance δhC

in the third order of smallness with respect to 2k/α, it is
sufficient to calculate from the matrix of the third order of
smallness the element K

(3)
12

K
(3)
12 = i

k3

α3

{
(1/6)α3(h1 − hC)3−

2(ε′1 − 1) + α(h1 − hC)(ε′1 − 1)+

S2
[
1 + π2/3 + (2 + π2/6)α(h1 − hC)

]
−

S4
[
π2/3 + (π2/6) ln 2 + (3/2)ζ(3)− 2β

]}
where number

β =

∞∑
m=0

(−1)m αm

m+ 2
= 0.2695882

αm =

m∑
n=0

(n+ 1)−2

and the expression in the brackets following S4 is numerically
equal to 5.693958.

[37] The impedance δhC is calculated as

δhC = δ1 +K
(1)
12 − 2K

(2)
22 δ1 −K

(1)
21 δ

2
1 −K

(1)
12 K

(2)
22 +K

(3)
12

The calculations yield

δhC = −i tan(kh∗∗L − khC)+

ik3S2α−3(16.33078 + 5.289858X2 − 5.693958S2) (27)

where αh∗∗L = αhL − (4/3)ψ′′k2α−2, X = αhL − αhC =
πi − 2 log(yk/α). The impedance δ1, like the elements of
matrixK, depends on the height h1 at which the field sewing
is performed. In the formula obtained for the impedance at
normal incidence δhC such dependence is absent, as it should
be. This indicates that the procedure of taking into account
the medium below the reflection region is correct.

[38] Thus, to describe the reflection of vertically polar-
ized electromagnetic waves at finite S2, expression (27) for
the impedance δhC referred to the complex height hC has
been derived. The accuracy of the formula is of the third
order of smallness with respect to parameter 2k/α. As a
function of S2, the impedance is a second-order polynomial.
The coefficients of this polynomial are functions of 2kα be-
cause α(hL − hC) = iπ − 2 ln(kγ/α). The boundary of the
applicability of the formula for δhC with increasing S2 has
not been defined; however, it is clear that it exists. To de-
termine the eigenvalues of local modes, ultrahigh C2 and S2

are required. Let us investigate these cases in more detail.

5. Reflection of Vertically Polarized Waves
at 2k/α < 0.1 and Large Parameter 2kC/α

[39] Let us pass from the systems of equations for the elec-
tromagnetic field (18) to the second-order differential equa-
tion with respect to Z0Hy

[
ε′
d

dz

1

ε′
d

dz
+ k2(ε′ − 1 + C2)

]
Z0Hy = 0 (28)
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By substituting Z0Hy = V
√
ε′, we get for the new func-

tion the second-order differential equation without the first
derivative [

d2

dz2
+ k2(ε′ − 1 + C2)+

1

2ε′
d2

dz2
ε′ − 3

4(ε′)2

(
dε′

dz

)2
]
V = 0

For the exponential profile,

1

2ε′
d2

dz2
ε′ − 3

4(ε′)2

(
dε′

dz

)2

=

α2

2

ε′ − 1

ε′
−

3

4

(
ε′ − 1

ε′

)2
∣∣∣∣∣
|ε′−1|�1

= −α
2

4
+

α2

ε′ − 1

Under this condition, the equation for V has the form[
ξ−1 d

dξ
ξ
d

dξ
+ 1 +

4k2C2

α2
ξ−2−

ξ−2 +
k2

α2

(
ξ

2

)−4
]
V = 0

ξ =
2k

α

√
ε′ − 1 (29)

Under condition C � |ξ−2
1 | at the lower boundary of the

upper region the last term in this equation can be omitted.
As a result we arrive at the Bessel equation with the index
ν =

√
1− µ2, µ = 2kC/α. Thus, in the upper region we

have the solution

Z0Hy = AH(1)
ν (ξ)

√
ε′

Ex =
A

ikε′
d

dz
H(1)

ν

√
ε′

In the vicinity of the lower boundary of then upper region
the modulus of the argument of the Hankel function is small.
This makes it possible to use the corresponding asymptotic

Z0Hy ≈ (ε′ − 1)(1−ν)/2−

e−iνπ Γ(1− ν)
Γ(1 + ν)

(
k

α

)2ν

(ε′ − 1)(1+ν)/2 (30)

The first term can be interpreted as the incident field,
whereas the expression (ε′ − 1)1/2+ν/2 can be interpreted
as a reflected field with a certain reflection coefficient.

[40] Equation (28) for the magnetic component Z0Hy in
the case of the exponential conductivity profile in the iono-
sphere is written as[

d2

dη2
+

1

η(1− η)
d

dη
+

µ2

4η2
− k2

α2η

]
Z0Hy = 0 (31)

where η = 1 − ε′. Equation (31) has two regular singular
points at η = 0 and η = 1 and one irregular point at η = ∞.
Let us use this equation in the region at the upper bound-
ary of which |η| � µ2α2/k2. In this case, equation (31) is
transformed into the Riemann equation with three regular
singular points 0, 1, and ∞ [Whitteker and Watson, 1927].
Then by substituting the variable Z0Hy by ηiµ/2V we reduce
the Riemann equation to the hypergeometric equation

η(1− η) d
2

dη2
V + (1 + iµ− iµη)dV

dη
+
iµ

2
V = 0

with parameters

a = −1/2 + iµ/2 + ν/2

b = −1/2 + iµ/2− ν/2

c = 1 + iµ ν =
√

1− µ2

The neighborhood of the Earth’s surface corresponds to the
neighborhood of the zero regular singular point of the equa-
tion. The lower boundary of the reflection region corre-
sponds to the neighborhood of an infinite singular point.
The problem is to extend the known solution of the equa-
tion in the neighborhood of the infinite singular point (30)
to the neighborhood of the zero singular point.

[41] To derive the solutions of equation (31) simplified by
omitting the last term for the neighborhood of the infinite
singular point, we consider its partial solutions

U (1)
∞ (η) = (−η)(1−ν)/2F (a, 1 + a− c; 1 + a− b; η−1)

U (2)
∞ (η) = (−η)(1+ν)/2F (b, 1 + b− c; 1 + b− a; η−1)

where

F (a, b; c; η) = 1 +
ab

c
η +

a(a+ 1)b(b+ 1)

c(c+ 1)2!
η2 + ...

is the hypergeometric function. At η →∞ functions U
(1)
∞ (η)

and U
(2)
∞ (η) behave as

U (1)
∞ (η) ≈ (−η)(1−ν)/2 = (ε′ − 1)1/2−ν

and

U (2)
∞ (η) ≈ (−η)(1+ν)/2 = (ε′ − 1)1/2+ν

which corresponds to the behavior of Z0Hy in the lower part
of the reflection region. Therefore we write

Z0Hy = U (1)
∞ (η) +R∞U

(2)
∞ (η) (32)

12 of 19



GI2006 kirillov and pronin: earth–ionosphere waveguide GI2006

where

R∞ = −e−iνπ Γ(1− ν)
Γ(1 + ν)

(
k

α

)2ν

is the wave reflection coefficient at the lower boundary of
the reflection region, ν =

√
1− µ2. To describe the field

behavior in the neighborhood of the zero singular point, we
consider other partial solutions of the equation

U
(1)
0 (η) = (−η)iµ/2F (a, b; c; η)

U
(2)
0 (η) = (−η)−iµ/2F (a+ 1− c, b+ 1− c; 2− c; η)

At low η these partial solutions behave as

U
(1)
0 (η) ≈ (−η)iµ/2 = eikCz(−η0)iµ/2

and

U
(2)
0 (η) ≈ (−η)−iµ/2 = e−ikCz(−η0)−iµ/2

where η0 is the variable corresponding to the variable η at
the Earth’s surface. The partial solution U

(1)
0 (η) is asso-

ciated with the incident field, the solution U
(2)
0 (η) is as-

sociated with the reflected field. Let us present the so-
lution for Z0Hy through partial solutions of the equation

U
(1)
0 (η) and U

(2)
0 (η), Z0Hy(η) = AU

(1)
0 (η)+BU

(2)
0 (η). Then

the ionospheric reflection coefficient at the Earth’s surface
level determined from the formula Z0Hy = D[exp(ikCz) +

R
‖
i exp(−ikCz)] can be expressed through the ratio B/A.

Then we have

R
‖
i = (−η0)−iµB/A = R

‖
hC

exp(2ikChC) (33)

where R
‖
hC

= B/A is the coefficient of wave reflection from
the ionosphere referred to the complex capacitance height
hC at which ε′(hC)− 1 = 1.

[42] The relation between partial solutions U
(1)
∞ (η),

U
(2)
∞ (η), and U

(1)
0 (η), U

(2)
0 (η) is known [Whitteker and Wat-

son, 1927]

U (1)
∞ (η) =

Γ(1 + a− b)Γ(1− c)
Γ(1 + a− c)Γ(1− b)U

(1)
0 (η)+

Γ(1 + a− b)Γ(c− 1)

Γ(c− b)Γ(a)
U

(2)
0 (η)

U (2)
∞ (η) =

Γ(1− a+ b)Γ(1− c)
Γ(1 + b− c)Γ(1− a)U

(1)
0 (η)+

Γ(1− a+ b)Γ(c− 1)

Γ(c− a)Γ(b)
U

(2)
0 (η) (34)

By combining formulae (32) and (34), we obtain the reflec-

tion coefficient R
‖
hC

as a function of µ and parameter 2k/α

R
‖
hC

= A(µ)
1−B+(µ)(k/α)2ν exp(−iπν)
1−B−(µ)(k/α)2ν exp(−iπν) (35)

Here

A(µ) =
Γ(1 + iµ)

Γ(1− iµ)

Γ2(1/2 + ν/2− iµ/2)

Γ2(1/2 + ν/2 + iµ/2)

B±(µ) =
(

1 + ν

1− ν

)
Γ2(1− ν)Γ2(1/2 + ν/2± iµ/2)

Γ2(1 + ν)Γ2(1/2− ν/2± iµ/2)

At |µ| � 1

A(µ) ≈ exp[(i/4)(2ψ′ − ψ′′)µ3] = exp(1.42349iµ3)

B+ ≈ B− = −4µ−4

In expression (35) for the reflection coefficient R
‖
hC

, the

terms with B±(µ) are superior to unity in the vicinity of
µ = 0. In the vicinity of µ2 = 2k/α they are comparable
to unity, and the reflection coefficient is close to the singular
point. In the case |µ2| < 2k/α, formula (35) is not applicable
for description of reflection. If |µ2| > 2k/α, and, simultane-

ously, |µ2| � 1, we get lnR
‖
hC

∼= i1.423490µ3. This expres-
sion coincides with the expression for the logarithm of the
reflection coefficient which can be obtained from the expres-
sion for the impedance (27) at small 2kC/α, but under the
condition |C| � 1. In this case the dependence on the term
with S2 in the expression for the impedance disappears, and
therefore there will be no uncertainty in the impedance and
hence in the reflection coefficient.

[43] In order to find the upper boundary of the applicabil-
ity of formula (35) with respect to parameter µ, calculations
of the reflection coefficient from impedance (27) and formula
(35) were carried out. The results are shown in Figures 9
and 10.

[44] In Figures 9 and 10 the values of parameter 2k/α are
given near the curves, the solid curves show the calculations
from the impedance (27), and the dashed curves show the
calculations using formula (35). It can be seen that the
accuracy of calculations using the expression for low µ with
the error within 10−2 is valid if |µ| < 0.3. The approximate
formula for high µ has the boundary of applicability from
below, |µ| > 2

√
2k/α. If parameter 2k/α takes the value

2k/α = 0.1, these expressions for the reflection coefficient
overlap only with the accuracy of the order of 10−1. The real
part of the reflection coefficient characterizes its modulus.
If µ is changed within unity, the modulus of the reflection
coefficient achieves its maximum at some value of µ which
depends on 2k/α. This value in the maximum is such one,
that taking into account that the height hC has negative
imaginary part, the modulus of the reflection coefficient from
the ionosphere at the Earth’s surface appears to be larger
than unity for real C � 1.

[45] The singular point for the reflection coefficient is the
value of µ equal to unity. In this case

A(1) =
Γ(1 + i)

Γ(1− i)
Γ2(1/2− i/2)

Γ2(1/2 + i/2)

B+(1) = B−(1) = 1
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Figure 9. Comparison of Re ln(R
‖
hC

) calculated by using two equations for different µ and parame-
ters 2k/α.

and the reflection coefficient can be calculated only after
resolution of the uncertainty of the type 0/0

R
‖
hC

(1) =
α(hL − hC)− 2− 2Ce − 2ψ(1/2 + i/2)

α(hL − hC)− 2− 2Ce − 2ψ(1/2− i/2)
A(1)

It is also possible to obtain a simpler expression by perform-
ing further transformations and calculations

R
‖
hC

(1) =
−2.57266 + i0.26027 + 2 lnα/k

−2.57266 + i6.02291 + 2 lnα/k
×

exp(i2.39963)

At |µ| � 1, the Stirling formula can be used for the Gamma
functions entering the expression for the reflection coefficient
(35), which will yield for coefficients A and B±

lnA ∼= iπ/2 + ln 2− πµ

lnB+ ∼= − ln 2 + 2iµ lnµ− 2iµ+ πµ

Figure 10. Comparison of Im ln(R
‖
hC

) calculated by using two equations for different µ and parame-

ters 2k/α.

lnB− ∼= ln 2 + 2iµ lnµ− 2iµ− πµ

At real positive µ, the modulus of coefficientA exponentially
decreases, the modulus of B+ grows, and the modulus of B−

decreases with increasing µ. In this case the denominator in
formula (35) can be replaced by unity, and for R

‖
hC

we have
approximately

R
‖
hC

∼= −i {2− exp [2iµ(−1 + lnαµ/k)]} exp(−πµ) (36)

It can be seen that at real and positive µ the reflection coeffi-
cient, by oscillating, exponentially decreases with increasing
of µ. Such oscillations are usually observed when two levels
of reflection are present. For the eigenvalues of vertically
polarized local modes of sufficiently large numbers, the vari-
able µ has a large positive real part and a small negative
imaginary part. Under these conditions, the exponent in
formula (36) is superior to two, and the reflection coefficient
coincides with the asymptotics of the reflection coefficient
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for the horizontally polarized waves (12), i.e.,

R
‖
i ≈ R⊥i

at Reµ� 1 and Imµ < 0.

6. Vertically Polarized Modes

[46] The characteristic equation for the vertical polariza-
tion has the form

R
‖
i (C)R‖g(C) = 1 (37)

where R
‖
i (C) is the ionospheric reflection coefficient of the

field at the Earth’s surface level,

R‖g =
C − δ‖g
C + δ

‖
g

is the coefficient of reflection from the Earth, and δ
‖
g =

iε′−1
g

√
ε′g − S2 tan(khg

√
ε′g − S2) is the ground impedance.

[47] For vertically polarized local modes, it can be approx-

imately written R
‖
g ≈ 1 − 2δ

‖
g/C, δ

‖
g ≈ ε′−1

g

√
ε′g − S2. By

passing from reflection coefficients to logarithms, we get for
the characteristic equation

khCC − (i/2) lnR
‖
hC

+ iδ‖g/C = mπ (38)

[48] Eigenvalues of local modes of low numbers are in the
region (0 < Reµ < 1). Since the imaginary part of the
capacitance height is negative, the imaginary parts of the
eigenvalues Cm of the first numbers can be positive.

[49] As the mode number increases, the eigenvalues fall
into the region Reµ � 1, which allows one to replace the
ionospheric reflection coefficient for the vertical polarization
by the reflection coefficient for the horizontal polarization in
characteristic equation (38). The characteristic equation in

this case will acquire the form kChph(C)+iδ
‖
g/C = mπ, and

the imaginary part of the eigenvalues will be negative.
[50] The eigenfunction of the vertically polarized modes

coincides with the horizontal component of the magnetic
field Z0Hy. It suffices to calculate the normalization integral
in the limits of the ionospheric part of the waveguide

h
‖
N ≡ 1

H2
y (0)

∞∫
0

ε′−1Hy(z)dz

∣∣∣
C=Cm

=
i

k

∂

∂C2
δ
‖
i (39)

The known analytical representations of the ionospheric re-
flection coefficient allow one to bring the normalization in-
tegral to the analytical form as well

2h
‖
N = h

‖
tr[1− (δ‖g/C

‖
m)2 − iδ‖g/(kC‖2m )

where ikh
‖
tr ≡ ∂/∂C lnR

‖
i . Approximately,

2h
‖
N
∼= h

‖
tr

Figure 11. Real parts of eigenvalues for the first 40 verti-
cally polarized modes.

which means that for vertically polarized modes the effective
waveguide width coincides with the triangulation height. Be-
low dependences of eigenvalues and triangulation height on
the mode number are given (Figures 11–13).

[51] It can be seen that the effective height for the first
modes approximately coincides with RehC . The imaginary
parts of the eigenvalues are negative. As the mode number
increases, the effective height grows, it falls into the region
of height RehL and then into the region of the heights of the
turning point. For such large numbers, ImCm are negative
and grow in modulus with increasing mode number.

7. Representation of the Electromagnetic
Field of a Horizontal Electric Dipole as
Expansion in Normal Waves

[52] The field of the zero mode in the anisotropic approxi-
mation was given in section 1 (see equation (4)). The proce-
dure of obtaining the representation of the electromagnetic
field of a horizontal electric dipole by normal waves is rather
cumbersome. It can be obtained by using the procedure

Figure 12. Imaginary parts of eigenvalues for the first 40
vertically polarized modes.

15 of 19



GI2006 kirillov and pronin: earth–ionosphere waveguide GI2006

Figure 13. Doubled normalization integral for 40 vertically
polarized modes.

given by Kirillov [1993] or independently, by considering the
problem in the cylindrical coordinate system {ρ, ϕ, z} related
to the source. As a result, the field at the Earth’s surface
will be given by

E = E0 + E
‖

+ E
⊥

H = H0 +H
‖

+H
⊥

(40)

E‖z = − i
4
kIlZ0δg cosϕ

∞∑
m=1

(h
‖
N,m)−1S‖mḢ

(1)
0 (kρS‖m)

E‖ρ = −Z0H
‖
ϕδg E‖ϕ = Z0H

‖
ρδg (41)

H‖
z = 0

H‖
ρ =

1

4ρ
Ilδg sinϕ

∞∑
m=1

(h
‖
N,m)−1(S‖m)−1Ḣ

(1)
0 (kρS‖m)

H‖
ϕ =

1

4
kIlδg cosϕ

∞∑
m=1

(h
‖
N,m)−1Ḣ

(1)
0 (kρS‖m)

E‖z = 0

E⊥ρ = − 1

4ρ
Il cosϕ

∞∑
m=1

(δ⊥g,mC
⊥
m)2

h⊥N,mS
⊥
m

Ḣ
(1)
0 (kρS⊥m)

E⊥ϕ =
1

4
kIlZ0 sinϕ

∞∑
m=1

(δ⊥g,mC
⊥
m)2

h⊥N,m

Ḣ
(1)
0 (kρS⊥m)

H⊥
z =

i

4
kIl sinϕ

∞∑
m=1

δ⊥g,m(C⊥m)2S⊥m
h⊥N,m

Ḣ
(1)
0 (kρS⊥m)

H⊥
ρ =

1

4
kIl sinϕ

∞∑
m=1

δ⊥g,m(C⊥m)2

h⊥N,m

Ḣ
(1)
0 (kρS⊥m)

H⊥
ϕ =

1

4ρ
Il cosϕ

∞∑
m=1

δ⊥g,m(C⊥m)2

h⊥N,mS
⊥
m

Ḣ
(1)
0 (kρS⊥m) (42)

For the modes with vertical polarization the ground impe-
dance is nearly independent of the mode number, which al-
lows one to express E

‖
ρ and E

‖
ϕ directly through H

‖
ϕ and H

‖
ρ .

Normalization integrals for both polarizations are of the or-
der of the effective waveguide height. Horizontally polarized
modes are proportional to (C⊥m)2, which are large numbers.
Because of this, horizontally polarized modes make a larger
contribution into the near-source field than vertically polar-
ized modes.

[53] From formulae (40), (41), and (42), the H
‖
ϕ compo-

nent of the magnetic field of a horizontal electric dipole with
a current moment of 107 A m was calculated as a function
of distance. The angle between the dipole and path was 0
degrees. The modes were calculated for a daytime Earth–
ionosphere waveguide with the lower wall characterized by
a homogeneous conductivity of 10−4 S m−1 to a depth of
70 km and an infinite conductivity below. The model of the
daytime ionosphere was taken for the conditions of solar ac-
tivity maximum. The magnetic field relative to 1 A m−1 was
calculated for a frequency of 1 Hz. The fields obtained in
this way are given in Figures 14 and 15 in comparison with
the fields calculated by using other formulae.

[54] The designations used in the figures are as follows:
Bsl is the field calculated by using formulae (5); Ban is the
field calculated from formulae (8); ρ−2 is the field calculated
from formulae (6); ρ−3 is the field calculated from equation
(7); Σ-mod is the field calculated from the sum of all the
modes including local ones, and 0-mode is the field of one
zero mode.

[55] One can see in Figure 14 that at distances from the
source less than 60 km, the near-source magnetic field cal-
culated under the condition of the ionosphere absence (Bsl)
obeys the law of inverse square of the distance. In spite of
such a short distance from the source, this field coincides
with the field calculated from the waveguide modes in the
presence of the ionosphere with an accuracy of not poorer
than 0.1 dB, which is the evidence of a good quality of the
work that has been done because the field of each mode, as
an element of the sum, is ionosphere-dependent, while their
sum does not depend on the ionosphere. Calculations of
the near-source magnetic field from Ban give an error higher
than 20 dB because near the source this field obeys the law
of inverse cube of the distance but the real field obeys the
law of inverse square.

[56] Figure 15 shows that as the distance from the source
further increases, the near-source magnetic field calculated
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Figure 14. Horizontal magnetic field ϕ-component calculated by using different formulae in the range
of distances from 5 to 80 km.

under the condition of the ionosphere absence (Bsl) departs
from the law of inverse square of the distance and obeys the
law of inverse cube of the distance beginning from a dis-
tance of the order of 75 km. Approximately at this distance,
the influence of the ionosphere on the magnetic field begins
to manifest itself, and the field calculated from the modes
begins to deviate from the field derived from the model with-
out the ionosphere (it increases). At a distance of 200 km, it
transforms into the field of one normal wave. The magnetic
field calculated from Ban does not pass exactly into the field
of the anisotropic zero mode.

Figure 15. Horizontal magnetic field ϕ-component calculated by using different formulae in the range
of distances from 20 to 250 km.

[57] The upper and lower boundaries of the transition re-
gion have been estimated with an accuracy of 0.2 dB in mod-
ulus. In the lower part of the transition region the field in
the waveguide coincides with the specified accuracy with the
field calculated from the model without the ionosphere, and
in the upper part of the region the field coincides with the
field of the leading normal wave. It was elucidated how
positions of the transition region boundaries depend on fre-
quency and the conductivity models of the Earth and iono-
sphere. The results are summarized in Table 2.

[58] It is evident from Table 2 that whatever the model
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Table 2. Summary of Results a

F , Hz σg, S m−1 Re hL, km lS , km
ρ1

Re hL

ρ2

Re hL
Σ/Bns, dB max(Σ/Bns), dB Conditions

200 10−4 81.5 3.6 0.5 1.7 −0.3 0.9 day
100 10−4 85.2 5.0 0.5 1.8 −0.2 −0.5 day
50 10−4 87.3 7.1 0.5 1.8 −0.3 −0.5 day
10 10−4 96.3 15.9 0.6 1.9 −0.3 −0.8 day
1 10−4 104 50.3 1.0 2.3 −2.3 −2.3 day

0.2 10−4 101 112 − 2.2 − −4.5 day
0.2 10−3 101 35.6 0.7 2.1 −1.2 −2.0 day

1 10−3 104 15.9 0.6 1.9 −0.3 −0.7 day
10 10−3 96.3 5.0 0.5 1.8 −0.2 −0.3 day

100 10−3 85.2 1.6 0.5 1.8 −0.2 −0.4 day
100 10−3 105 1.6 0.5 1.8 −0.2 −0.4 night
10 10−3 83.6 5.0 0.7 1.8 −1.0 −1.4 night
1 10−3 319 15.9 0.5 1.8 −0.2 −0.3 night
1 10−4 319 50.3 0.6 1.9 −0.4 −0.8 night

10 10−4 83.5 15.9 1.0 1.9 −1.6 −1.9 night
100 10−4 105 5.0 0.5 1.8 −0.2 −0.5 night

a The designations are lS is the thickness of the Earth’s skin layer, ρ1/Re hL is the distance between the source and the lower
boundary of the transition region in fractions of the inductance height, ρ2/Re hL is the distance between the source and the upper
boundary of the transition region in fractions of the inductance height, Σ/Bns is the ratio between the fields calculated from the sum
of modes and from equation (8) in dB at the lower boundary of the transition region, max(Σ/Bns) is the maximum value of this ratio
in the transition region.

and frequency, the lower boundary of the transition region
is approximately 0.5–0.7 of Re hL. The upper boundary of
the transition region was calculated from the distance be-
ginning from which the contribution of local modes into the
field becomes insignificant as compared with the contribu-
tion of the zero mode. It proved to be approximately equal
to 1.8 RehL. Within the boundaries of the transition re-
gion, the discrepancy between the calculations from (Ban)
and exact calculations does not exceed 2 dB.

[59] Comparison shows that the largest discrepancy occurs
for the lower part of the transition region, where it reaches 8
dB. The deeper the lower boundary of the transition region
goes into the zone adjacent to the source limited by the
thickness of the Earth’s skin layer, the larger the discrepancy.

8. Results

[60] Thus the near-Earth electromagnetic field of a hori-
zontal electric dipole at frequencies 10−1 to 103 Hz from ex-
tremely short distances amounting to fractions of the Earth’s
skin layer thickness to the distances where the electromag-
netic field nearly coincides with the field of the zero waveg-
uide mode has been determined. The electromagnetic field
is represented as expansion in waveguide modes of both po-
larizations in the entire range of distances mentioned above.
The field of the zero mode is considered with due account
of the anisotropy of the lower ionosphere. The field of lo-
cal modes is treated in the isotropic approximation for the
ionosphere described by the effective exponential conductiv-
ity profile. The obtained analytical description of the coeffi-
cient of reflection from the ionosphere at the Earth’s surface

level as a cosine of the wave incidence angle resulted in find-
ing a huge number of local modes (of the order of several
hundreds) which are needed to present the field in the near-
source region.

[61] The transition region in which the field varies from
the ionosphere-independent field to the field determined by
the zero mode alone has been estimated. The description
of the field in the transition region by modes has been com-
pared with the description obtained by summing the fields
of imaginary sources [Bannister, 1986].

[62] Acknowledgment. The authors thank E. D. Tereshch-

enko for stimulating this work.
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